Read by QxMD icon Read

zwitterionic polymer

Kai-Long Zhang, Jie Zhou, Hong Zhou, Ying Wu, Rui Liu, Li-Li Wang, Wei-Wen Lin, Guoming Huang, Huang-Hao Yang
The mononuclear phagocyte system (MPS), with key roles in recognition and clearance of foreign particles, is a major constraint to nanoparticle-based delivery systems. The desire to improve the delivery efficiency has prompted the search for stealthy long-circulating nanoplatforms. Herein, we design an antiphagocytic delivery system with "active" stealth behavior for cancer theranostics combining efficient MRI and enhanced drug delivery. We modify self-peptide, a synthetic peptide for active immunomodulation, to biodegradable poly (lactide-glycolide)-poly (ethylene glycol) (PLGA-PEG), then utilize the self-assembly properties of PLGA-PEG to form nanomicelles that encapsulating iron oxide (IO) nanoparticles and anticancer drug paclitaxel (PTX)...
August 16, 2017: ACS Applied Materials & Interfaces
Wanlu Zhang, Guangji Li, Yinlei Lin, Liying Wang, Shuqing Wu
We aimed to introduce hydrophilic sulfobetaine-type zwitterionic groups to macromolecular chains of copolymers to construct novel copolymer hydrogels with anti-protein-fouling performance that could be used as soft contact lens (SCL) materials. Using hydroxyethyl methacrylate (HEMA), N-vinyl pyrrolidinone (NVP) and sulfobetaine methacrylate (SBMA) as comonomers, several copolymer hydrogels with different SBMA contents, poly(HEMA-NVP-SBMA), are synthesized via radical copolymerization in an aqueous phase. Surface chemistry, structural morphologies, water contact angle (WCA), equilibrium water content (EWC), visible light transmittance and tensile mechanical properties are investigated...
August 11, 2017: Journal of Biomaterials Science. Polymer Edition
Marleen Wilde, Rebecca J Green, Michael R Sanders, Francesca Greco
Understanding how polymers interact with biological membranes is important for the development of polymer based therapeutics and wider biomedical applications. Here, biophysical methods (surface pressure measurements, external reflection FTIR) have been used to investigate the interaction between PAMAM dendrimers (Generation 5 or 4.5) and anionic (DPPG) or zwitterionic (DPPC) model membranes. We observed a concentration-dependent binding behaviour of both PAMAM species to both model membranes; however, equivalent levels of penetration into DPPC monolayers required approximately 10-fold higher dendrimer concentrations than for penetration into DPPG monolayers...
August 10, 2017: Journal of Drug Targeting
Ho Joon Kwon, Yunki Lee, Le Thi Phuong, Gyeung Mi Seon, Eunsuk Kim, Jong Chul Park, Hyunjin Yoon, Ki Dong Park
Introducing antifouling property to biomaterial surfaces has been considered an effective method for preventing the failure of implanted devices. In order to achieve this, the immobilization of zwitterions on biomaterial surfaces has been proven to be an excellent way of improving anti-adhesive potency. In this study, poly(sulfobetaine-co-tyramine), a tyramine-conjugated sulfobetaine polymer, was synthesized and simply grafted onto the surface of polyurethane via a tyrosinase-mediated reaction. Surface characterization by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy demonstrated that the zwitterionic polymer was successfully introduced onto the surface of polyurethane and remained stable for 7days...
August 4, 2017: Acta Biomaterialia
Lanqun Mao
Resisting biomolecules adsorption onto the surface of the brain-implanted microelectrode is a key issue for in vivo monitoring of neurochemicals. Here, we demonstrate for the first time an ultrathin cell membrane-mimic film of ethylenedioxythiophene tailored with zwitterionic phosphorylcholine (EDOT-PC) electropolymerized onto the surface of carbon fiber microelectrode (CFE) not only resists protein adsorption but also maintains the sensitivity and time response for in vivo monitoring of dopamine (DA). Thus, the as-prepared PEDOT-PC/CFEs could be used as a new reliable platform for tracking DA in vivo and would help understand the physiological and pathological function of DA...
August 3, 2017: Angewandte Chemie
Urszula Kwolek, Keita Nakai, Anna Pluta, Maria Zatorska, Dawid Wnuk, Sławomir Lasota, Jan Bednar, Marta Michalik, Shin-Ichi Yusa, Mariusz Kepczynski
Polymer vesicles formed by a pair of oppositely charged diblock copolyelectrolytes (PICsomes) are considered as a good alternative to polymersomes formed by amphiphilic copolymers. Here, we report on inherent stability and in vitro biocompatibility of PICsomes prepared from a pair of oppositely charged zwitterionic-ionic copolymers, in which the ionic block is a strong polyelectrolyte. Our results demonstrated that the PICsomes are highly stable over a wide range of pH and temperatures. Direct microscopic observations revealed that the PICsomes retain their morphology in the presence of human serum...
July 19, 2017: Colloids and Surfaces. B, Biointerfaces
Dong Chen, Yu Huang, Shuting Xu, Huangyong Jiang, Jieli Wu, Xin Jin, Xinyuan Zhu
Polymeric drug delivery system termed as "polyprodrug amphiphile" poly(2-methylacryloyloxyethyl phosphorylcholine)-b-poly(10-hydroxy-camptothecin methacrylate (pMPC-b-pHCPT) is developed for the prolonged-acting cancer therapy. It is obtained by two-step reversible addition-fragmentation chain transfer polymerization of zwitterionic monomer MPC and an esterase-responsive polymerizable prodrug methacrylic anhydride-CPT, respectively. This diblock polymer is composed of both antifouling (pMPC) and bioactive (pHCPT) segments and the drug is designed as a building block to construct the polymer skeleton directly...
July 24, 2017: Macromolecular Bioscience
Vitaliy V Khutoryanskiy
Mucus is a highly hydrated viscoelastic gel present on various moist surfaces in our body including the eyes, nasal cavity, mouth, gastrointestinal, respiratory and reproductive tracts. It serves as a very efficient barrier that prevents harmful particles, viruses and bacteria from entering the human body. However, the protective function of the mucus also hampers the diffusion of drugs and nanomedicines, which dramatically reduces their efficiency. Functionalisation of nanoparticles with low molecular weight poly(ethylene glycol) (PEGylation) is one of the strategies to enhance their penetration through mucus...
July 20, 2017: Advanced Drug Delivery Reviews
Robert J Soto, Jonathon B Schofield, Shaylyn E Walter, Maggie J Malone-Povolny, Mark H Schoenfisch
Nitric oxide (NO)-releasing polymers have proven useful for improving the biocompatibility of in vivo glucose biosensors. Unfortunately, leaching of the NO donor from the polymer matrix remains a critical design flaw of NO-releasing membranes. Herein, a toolbox of NO-releasing silica nanoparticles (SNPs) was utilized to systematically evaluate SNP leaching from a diverse selection of biomedical-grade polyurethane sensor membranes. Glucose sensor analytical performance and NO-release kinetics from the sensor membranes were also evaluated as a function of particle and polyurethane (PU) chemistries...
January 27, 2017: ACS Sensors
Mingrui Liao, Hongyan Liu, Hongyu Guo, Jian Zhou
The antifouling property of exogenous materials is vital for their in vivo applications. In this work, dissipative particle dynamics simulations are performed to study the self-assembled morphologies of two copolymer systems containing poly(ethylene glycol) (PEG) and poly(carboxybetaine) (PCB) in aqueous solutions. Effects of polymer composition and polymer concentration on the self-assembled structures of the two copolymers (PLA-PEG and PLA-PCB) are investigated, respectively [PLA represents poly(lactic acid)]...
July 17, 2017: Langmuir: the ACS Journal of Surfaces and Colloids
Natalia Wilkosz, Dorota Jamróz, Wojciech Kopeć, Keita Nakai, Shin-Ichi Yusa, Magdalena Wytrwal-Sarna, Jan Bednar, Maria Nowakowska, Mariusz Kepczynski
Interaction of polycations with lipid membranes is a very important issue in many biological and medical applications such as gene delivery or antibacterial usage. In this work, we address the influence of hydrophobic substitution of strong polycations containing quaternary ammonium groups on the polymer-zwitterionic membrane interactions. In particular, we focus on the polymer tendency to adsorb on or/and incorporate into the membrane. We used complementary experimental and computational methods to enhance our understanding of the mechanism of the polycation-membrane interactions...
July 19, 2017: Journal of Physical Chemistry. B
Eugene P Magennis, Nora Francini, Francesca Mastrotto, Rosa Catania, Martin Redhead, Francisco Fernandez-Trillo, David Bradshaw, David Churchley, Klaus Winzer, Cameron Alexander, Giuseppe Mantovani
Streptococcus mutans is the most significant pathogenic bacterium implicated in the formation of dental caries and, both directly and indirectly, has been associated with severe conditions such as multiple sclerosis, cerebrovascular and peripheral artery disease. Polymers able to selectively bind S. mutans and/or inhibit its adhesion to oral tissue in a non-lethal manner would offer possibilities for addressing pathogenicity without selecting for populations resistant against bactericidal agents. In the present work two libraries of 2-(dimethylamino)ethyl methacrylate (pDMAEMA)-based polymers were synthesized with various proportions of either N,N,N-trimethylethanaminium cationic- or sulfobetaine zwitterionic groups...
2017: PloS One
Braden L Leigh, Elise Cheng, Linjing Xu, Corinne Andresen, Marlan R Hansen, C Allan Guymon
Developing materials that reduce or eliminate fibrosis encapsulation of neural prosthetic implants could significantly enhance implant fidelity by improving the tissue/electrode array interface. Here, we report on the photografting and patterning of two zwitterionic materials, sulfobetaine methacrylate (SBMA) and carboxybetaine methacrylate (CBMA), for controlling the adhesion and directionality of cells relevant to neural prosthetics. CBMA and SBMA polymers were photopolymerized and grafted on glass surfaces then characterized by X-ray photoelectron spectroscopy, water contact angle, and protein adsorption...
July 24, 2017: Biomacromolecules
Cheng-Mei Xing, Fan-Ning Meng, Miao Quan, Kai Ding, Yuan Dang, Yong-Kuan Gong
A versatile fabrication and performance optimization strategy of PEG and zwitterionic polymer coatings is developed on the sensor chip of surface plasma resonance (SPR) instrument. A random copolymer bearing phosphorylcholine zwitterion and active ester side chains (PMEN) and carboxylic PEG coatings with comparable thicknesses were deposited on SPR sensor chips via amidation coupling on the precoated polydopamine (PDA) intermediate layer. The PMEN coating showed much stronger resistance to bovine serum albumin (BSA) adsorption than PEG coating at very thin thickness (∼1nm)...
September 1, 2017: Acta Biomaterialia
Bozhen Wu, Lixun Zhang, Lei Huang, Shengwei Xiao, Yin Yang, Mingqiang Zhong, Jintao Yang
Antibacterial surfaces with both bacteria killing and release functions show great promise in biological and biomedical applications, in particular for reusable medical devices. However, these surfaces either require a sophisticated technique to create delicate structures or need rigorous stimuli to trigger the functions, greatly limiting their practical application. In this study, we made a step forward by developing a simple system based on a salt-responsive polyzwitterionic brush. Specifically, the salt-responsive brush of poly(3-(dimethyl (4-vinylbenzyl) ammonium) propyl sulfonate) (polyDVBAPS) was endowed with bactericidal function by grafting an effective bactericide, i...
July 10, 2017: Langmuir: the ACS Journal of Surfaces and Colloids
Yong Du, Jingyao Gao, Tingting Chen, Chao Zhang, Jian Ji, Zhi-Kang Xu
Poly(oligoethylene glycol methacrylate) (POEGMA) and zwitterionic polymer brushes have been widely used for constructing biocompatible or antifouling surfaces, and their oxidative stability is very important to the practical application. Herein, POEGMA, poly(sulfobetaine methacrylate) (PSBMA), poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC), and poly(carboxybetaine methacrylate) (PCBMA) were grafted on quartz crystal microbalance (QCM) chips via surface-initiated atom transfer radical polymerization (SI-ATRP)...
July 10, 2017: Langmuir: the ACS Journal of Surfaces and Colloids
Koushik Debnath, Nibedita Pradhan, Brijesh Kumar Singh, Nihar R Jana, Nikhil R Jana
Prevention and therapeutic strategies for various neurodegenerative diseases focus on inhibiting protein fibrillation, clearing aggregated protein plaques from the brain, and lowering protein-aggregate-induced toxicity. We have designed poly(trehalose) nanoparticles that can inhibit amyloid/polyglutamine aggregation under extra-/intracellular conditions, reduce such aggregation-derived cytotoxicity, and prevent polyglutamine aggregation in a Huntington's disease (HD) model mouse brain. The nanoparticles have a hydrodynamic size of 20-30 nm and are composed of a 6 nm iron oxide core and a zwitterionic polymer shell containing ∼5-12 wt % covalently linked trehalose...
July 19, 2017: ACS Applied Materials & Interfaces
Benxin Jing, Jie Qiu, Yingxi Zhu
Coacervate complexes that are liquid-liquid separated complex materials are often formed by stoichiometrically mixing oppositely charged polyelectrolytes in salted aqueous solution. Entropy-driven ion pairing, resulting from the release of counterions near polyelectrolytes, has been identified as the primary driving force for coacervate formation between oppositely charged polyelectrolytes, including proteins and DNA, in aqueous solution. In this work we have examined the complexation between net neutral zwitterionic poly(sulfobetaine methacrylate) (PSBMA) and inorganic polyoxometalate (POM) polyanions in LiCl aqueous solutions...
July 19, 2017: Soft Matter
Mutsuo Tanaka, Shigeru Kurosawa
Surface modification of PDMS, polycarbonate, and acrylic resin was examined using various methacryl polymers bearing sulfobetaine, phosphoryl choline, and oligoethylene glycol units. We have found that zwitterionic polymers are adsorbed on the PDMS surface treated with plasma. The surface of PDMS is stable to keep high hydrophilicity after a month of the modification. On the other hand, one of sulfobetaine polymers showed distinguished adsorption behavior in the case of polycarbonate surface treated with plasma...
June 13, 2017: Journal of Oleo Science
Hsiang-Chieh Hung, Priyesh Jain, Peng Zhang, Fang Sun, Andrew Sinclair, Tao Bai, Bowen Li, Kan Wu, Caroline Tsao, Erik J Liu, Harihara S Sundaram, Xiaojie Lin, Payam Farahani, Timothy Fujihara, Shaoyi Jiang
Medical devices face nonspecific biofouling from proteins, cells, and microorganisms, which significantly contributes to complications and device failure. Imparting these devices with nonfouling capabilities remains a major challenge, particularly for those made from elastomeric polymers. Current strategies, including surface coating and copolymerization/physical blending, necessitate compromise among nonfouling properties, durability, and mechanical strength. Here, a new strategy is reported to achieve both high bulk mechanical strength and excellent surface nonfouling properties, which are typically contradictory, in one material...
June 16, 2017: Advanced Materials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"