keyword
MENU ▼
Read by QxMD icon Read
search

Retinal stem cells

keyword
https://www.readbyqxmd.com/read/28223209/langmuir-schaefer-film-deposition-onto-honeycomb-porous-films-for-retinal-tissue-engineering
#1
Maria Teresa Calejo, Tanja Ilmarinen, Elina Vuorimaa-Laukkanen, Elina Talvitie, Hanna M Hakola, Heli Skottman, Minna Kellomäki
: Age-related macular degeneration (AMD) is the leading cause of vision loss in senior citizens in the developed world. The disease is characterised by the degeneration of a specific cell layer at the back of the eye - the retinal pigment epithelium (RPE), which is essential in retinal function. The most promising therapeutic option to restore the lost vision is considered to be RPE cell transplantation. This work focuses on the development of biodegradable biomaterials with similar properties to the native Bruch's membrane as carriers for RPE cells...
February 18, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28220575/generation-of-storable-retinal-organoids-and-retinal-pigmented-epithelium-from-adherent-human-ips-cells-in-xeno-free-and-feeder-free-conditions
#2
Sacha Reichman, Amélie Slembrouck, Giuliana Gagliardi, Antoine Chaffiol, Angélique Terray, Céline Nanteau, Anais Potey, Morgane Belle, Oriane Rabesandratana, Jens Duebel, Gael Orieux, Emeline F Nandrot, José-Alain Sahel, Olivier Goureau
Human induced pluripotent stem cells (hiPSCs) are potentially useful in regenerative therapies for retinal disease. For medical applications, therapeutic retinal cells, such as retinal pigmented epithelial (RPE) cells or photoreceptor precursors, must be generated under completely defined conditions. To this purpose, we have developed a two-step xeno-free/feeder-free (XF/FF) culture system to efficiently differentiate hiPSCs into retinal cells. This simple method, relies only on adherent hiPSCs cultured in chemically defined media, bypassing embryoid body formation...
February 20, 2017: Stem Cells
https://www.readbyqxmd.com/read/28220544/prospective-purification-and-characterization-of-m%C3%A3-ller-glia-in-the-mouse-retina-regeneration-assay
#3
Patrick Schäfer, Mike O Karl
Reactive gliosis is an umbrella term for various glia functions in neurodegenerative diseases and upon injury. Specifically, Müller glia (MG) in some species readily regenerate retinal neurons to restore vision loss after insult, whereas mammalian MG respond by reactive gliosis-a heterogeneous response which frequently includes cell hypertrophy and proliferation. Limited regeneration has been stimulated in mammals, with a higher propensity in young MG, and in vitro compared to in vivo, but the underlying processes are unknown...
February 21, 2017: Glia
https://www.readbyqxmd.com/read/28216299/hipsc-derived-retinal-ganglion-cells-grow-dendritic-arbors-and-functional-axons-on-a-tissue-engineered-scaffold
#4
Kangjun Li, Xiufeng Zhong, Sijing Yang, Ziming Luo, Kang Li, Ying Liu, Song Cai, Huaiyu Gu, Shoutao Lu, Haijun Zhang, Yantao Wei, Jing Zhuang, Yehong Zhuo, Zhigang Fan, Jian Ge
: Numerous therapeutic procedures in modern medical research rely on the use of tissue engineering for the treatment of retinal diseases. However, the cell source and the transplantation method are still a limitation. Previously, we reported on the induction of a self-organizing three-dimensional neural retina from human-induced pluripotent stem cells (hiPSCs). In this study, we disclose the generation of retinal ganglion cells (RGCs) from the neural retina and their seeding on a biodegradable poly (lactic-co-glycolic acid) (PLGA) scaffold to create an engineered RGC-scaffold biomaterial...
February 16, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28216069/neuronal-differentiation-in-the-early-human-retinogenesis
#5
Anita Rancic, Natalija Filipovic, Josipa Marin Lovric, Snjezana Mardesic, Mirna Saraga-Babic, Katarina Vukojevic
AIM: Our study investigates the differentiation of retinal stem cells towards different neuronal subtypes during the critical period of human eye development. METHODS: Expression of the neuronal marker neurofilament 200 (NF200), tyrosine hydroxilase (TH) and choline acetyltransferase (ChAT) was seen by immunofluorescence in the 5th-12th - week stage of development in the human eye. Data was analysed by Mann-Whitney, Kruskal-Wallis and Dunn's post hoc tests. RESULTS: NF200, TH and ChAT cells appeared in the 5th/6th week and gradually increased during further development...
February 16, 2017: Acta Histochemica
https://www.readbyqxmd.com/read/28210901/transplantation-of-lineage-negative-stem-cells-in-pterygopalatine-artery-ligation-induced-retinal-ischemia-reperfusion-injury-in-mice
#6
Gillipsie Minhas, Sudesh Prabhakar, Ryuichi Morishita, Munehisa Shimamura, Reema Bansal, Akshay Anand
Retinal ischemia is a condition associated with retinal degenerative diseases such as glaucoma, diabetic retinopathy, and other optic neuropathies, leading to visual impairment and blindness worldwide. Currently, there is no therapy available for ischemic retinopathies. Therefore, the aim of this study was to test a murine model of pterygopalatine artery ligation-induced retinal injury for transplantation of mouse bone marrow-derived lineage-negative (lin-ve) stem cells. The mouse external carotid artery and pterygopalatine artery were ligated for 3...
February 16, 2017: Molecular and Cellular Biochemistry
https://www.readbyqxmd.com/read/28210098/mertk-gene-expression-and-photoreceptor-outer-segment-phagocytosis-by-cultured-rat-bone-marrow-mesenchymal-stem-cells
#7
Rong-Mei Peng, Jing Hong, Ying Jin, Yu-Zhao Sun, Yi-Qian Sun, Pei Zhang
BACKGROUND: Bone marrow mesenchymal stem cells (BM-MSCs) are multipotential stem cells that have been used for a broad spectrum of indications. Several investigations have used BM-MSCs to promote photoreceptor survival and suggested that BM-MSCs are a potential source of cell replacement therapy for some forms of retinal degeneration. PURPOSE: To investigate the expression of the MER proto-oncogene, tyrosine kinase (Mertk), involved in the disruption of RPE phagocytosis and the onset of autosomal recessive retinitis pigmentosa in rat BM-MSCs and to compare phagocytosis of the photoreceptor outer segment (POS) by BM-MSCs and RPE cells in vitro...
2017: Molecular Vision
https://www.readbyqxmd.com/read/28205557/experimental-study-of-the-biological-properties-of-human-embryonic-stem-cell-derived-retinal-progenitor-cells
#8
Jingzhi Shao, Peng-Yi Zhou, Guang-Hua Peng
Retinal degenerative diseases are among the leading causes of blindness worldwide, and cell replacement is considered as a promising therapeutic. However, the resources of seed cells are scarce. To further explore this type of therapy, we adopted a culture system that could harvest a substantial quantity of retinal progenitor cells (RPCs) from human embryonic stem cells (hESCs) within a relatively short period of time. Furthermore, we transplanted these RPCs into the subretinal spaces of Royal College of Surgeons (RCS) rats...
February 13, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28205140/erratum-to-mesenchymal-stem-cells-attenuate-hydrogen-peroxide-induced-oxidative-stress-and-enhance-neuroprotective-effects-in-retinal-ganglion-cells
#9
Yi Cui, Nuo Xu, Wei Xu, Guoxing Xu
No abstract text is available yet for this article.
February 15, 2017: In Vitro Cellular & Developmental Biology. Animal
https://www.readbyqxmd.com/read/28203188/endoscope-assisted-and-controlled-argus-ii-epiretinal-prosthesis-implantation-in-late-stage-retinitis-pigmentosa-a-report-of-2-cases
#10
Emin Özmert, Sibel Demirel
Several different approaches for restoring sight in subjects who are blind due to outer retinal degeneration are currently under investigation, including stem cell therapy, gene therapy, and visual prostheses. Although many different types of visual prostheses have shown promise, to date, the Argus II Epiretinal Prosthesis System, developed in a clinical setting over the course of 10 years, is the world's first and only retinal prosthesis that has been approved by the United States Food and Drug Administration (FDA) and has been given the CE-Mark for sale within the European Economic Area (EEA)...
September 2016: Case Reports in Ophthalmology
https://www.readbyqxmd.com/read/28202390/systemic-injection-of-rpe65-programmed-bone-marrow-derived-cells-prevents-progression-of-chronic-retinal-degeneration
#11
Xiaoping Qi, S Louise Pay, Yuanqing Yan, James Thomas, Alfred S Lewin, Lung-Ji Chang, Maria B Grant, Michael E Boulton
Bone marrow stem and progenitor cells can differentiate into a range of non-hematopoietic cell types, including retinal pigment epithelium (RPE)-like cells. In this study, we programmed bone marrow-derived cells (BMDCs) ex vivo by inserting a stable RPE65 transgene using a lentiviral vector. We tested the efficacy of systemically administered RPE65-programmed BMDCs to prevent visual loss in the superoxide dismutase 2 knockdown (Sod2 KD) mouse model of age-related macular degeneration. Here, we present evidence that these RPE65-programmed BMDCs are recruited to the subretinal space, where they repopulate the RPE layer, preserve the photoreceptor layer, retain the thickness of the neural retina, reduce lipofuscin granule formation, and suppress microgliosis...
February 12, 2017: Molecular Therapy: the Journal of the American Society of Gene Therapy
https://www.readbyqxmd.com/read/28198592/bone-marrow-derived-mesenchymal-stem-cells-derived-exosomes-promote-survival-of-retinal-ganglion-cells-through-mirna-dependent-mechanisms
#12
Ben Mead, Stanislav Tomarev
The loss of retinal ganglion cells (RGC) and their axons is one of the leading causes of blindness and includes traumatic (optic neuropathy) and degenerative (glaucoma) eye diseases. Although no clinical therapies are in use, mesenchymal stem cells (MSC) have demonstrated significant neuroprotective and axogenic effects on RGC in both of the aforementioned models. Recent evidence has shown that MSC secrete exosomes, membrane enclosed vesicles (30-100 nm) containing proteins, mRNA and miRNA which can be delivered to nearby cells...
February 15, 2017: Stem Cells Translational Medicine
https://www.readbyqxmd.com/read/28196199/survival-of-transplanted-human-embryonic-stem-cell-derived-retinal-pigment-epithelial-cells-in-a-human-recipient-for-22-months
#13
Sung Han Shim, Gwangil Kim, Dong Ryul Lee, Jeoung Eun Lee, Hee Jung Kwon, Won Kyung Song
No abstract text is available yet for this article.
February 9, 2017: JAMA Ophthalmology
https://www.readbyqxmd.com/read/28194184/signal-factors-secreted-by-2d-and-spheroid-mesenchymal-stem-cells-and-by-cocultures-of-mesenchymal-stem-cells-derived-microvesicles-and-retinal-photoreceptor-neurons
#14
Lili Xie, Mao Mao, Liang Zhou, Lusi Zhang, Bing Jiang
We aim to identify levels of signal factors secreted by MSCs cultured in 2D monolayers (2D-MSCs), spheroids (spheroids MSCs), and cocultures of microvesicles (MVs) derived from 2D-MSCs or spheroid MSCs and retinal photoreceptor neurons. We seeded 2D-MSCs, spheroid MSCs, and cells derived from spheroids MSCs at equal numbers. MVs isolated from all 3 culture conditions were incubated with 661W cells. Levels of 51 signal factors in conditioned medium from those cultured conditions were quantified with bead-based assay...
2017: Stem Cells International
https://www.readbyqxmd.com/read/28194183/regulation-of-stem-cell-properties-of-m%C3%A3-ller-glia-by-jak-stat-and-mapk-signaling-in-the-mammalian-retina
#15
REVIEW
Krista M Beach, Jianbo Wang, Deborah C Otteson
In humans and other mammals, the neural retina does not spontaneously regenerate, and damage to the retina that kills retinal neurons results in permanent blindness. In contrast to embryonic stem cells, induced pluripotent stem cells, and embryonic/fetal retinal stem cells, Müller glia offer an intrinsic cellular source for regenerative strategies in the retina. Müller glia are radial glial cells within the retina that maintain retinal homeostasis, buffer ion flux associated with phototransduction, and form the blood/retinal barrier within the retina proper...
2017: Stem Cells International
https://www.readbyqxmd.com/read/28192065/vascular-endothelial-growth-factor-a-and-leptin-expression-associated-with-ectopic-proliferation-and-retinal-dysplasia-in-zebrafish-optic-pathway-tumors
#16
Laura E Schultz, Staci L Solin, Wesley A Wierson, Janna M Lovan, Judith Syrkin-Nikolau, Deborah E Lincow, Andrew J Severin, Donald S Sakaguchi, Maura McGrail
In the central nervous system injury induces cellular reprogramming and progenitor proliferation, but the molecular mechanisms that limit regeneration and prevent tumorigenesis are not completely understood. We previously described a zebrafish optic pathway tumor model in which transgenic Tg(flk1:RFP)is18/+ adults develop nonmalignant retinal tumors. Key pathways driving injury-induced glial reprogramming and regeneration contributed to tumor formation. In this study, we examine a time course of proliferation and present new analyses of the Tg(flk1:RFP)is18/+ dysplastic retina and tumor transcriptomes...
February 13, 2017: Zebrafish
https://www.readbyqxmd.com/read/28191768/multimodal-delivery-of-isogenic-mesenchymal-stem-cells-yields-synergistic-protection-from-retinal-degeneration-and-vision-loss
#17
Benjamin Bakondi, Sergey Girman, Bin Lu, Shaomei Wang
We previously demonstrated that subretinal injection (SRI) of isogenic mesenchymal stem cells (MSCs) reduced the severity of retinal degeneration in Royal College of Surgeons rats in a focal manner. In contrast, intravenous MSC infusion (MSC(IV) ) produced panoptic retinal rescue. By combining these treatments, we now show that MSC(IV) supplementation potentiates the MSC(SRI) -mediated rescue of photoreceptors and visual function. Electrophysiological recording from superior colliculi revealed 3.9-fold lower luminance threshold responses (LTRs) and 22% larger functional rescue area from combined treatment compared with MSC(SRI) alone...
February 2017: Stem Cells Translational Medicine
https://www.readbyqxmd.com/read/28191760/directing-differentiation-of-pluripotent-stem-cells-toward-retinal-pigment-epithelium-lineage
#18
Parul Choudhary, Heather Booth, Alex Gutteridge, Beata Surmacz, Irene Louca, Juliette Steer, Julie Kerby, Paul John Whiting
Development of efficient and reproducible conditions for directed differentiation of pluripotent stem cells into specific cell types is important not only to understand early human development but also to enable more practical applications, such as in vitro disease modeling, drug discovery, and cell therapies. The differentiation of stem cells to retinal pigment epithelium (RPE) in particular holds promise as a source of cells for therapeutic replacement in age-related macular degeneration. Here we show development of an efficient method for deriving homogeneous RPE populations in a period of 45 days using an adherent, monolayer system and defined xeno-free media and matrices...
February 2017: Stem Cells Translational Medicine
https://www.readbyqxmd.com/read/28191500/insights-from-genetic-model-systems-of-retinal-degeneration-role-of-epsins-in-retinal-angiogenesis-and-vegfr2-signaling
#19
Yunzhou Dong, Xue Cai, Yong Wu, Yanjun Liu, Lin Deng, Hong Chen
The retina is a light sensitive tissue that contains specialized photoreceptor cells called rods and cones which process visual signals. These signals are relayed to the brain through interneurons and the fibers of the optic nerve. The retina is susceptible to a variety of degenerative diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), retinitis pigmentosa (RP) and other inherited retinal degenerations. In order to reveal the mechanism underlying these diseases and to find methods for the prevention/treatment of retinal degeneration, animal models have been generated to mimic human eye diseases...
January 2017: Journal of Nature and Science
https://www.readbyqxmd.com/read/28186701/bone-marrow-derived-mesenchymal-stem-cells-derived-exosomes-promote-survival-of-retinal-ganglion-cells-through-mirna-dependent-mechanisms
#20
Ben Mead, Stanislav Tomarev
The loss of retinal ganglion cells (RGC) and their axons is one of the leading causes of blindness and includes traumatic (optic neuropathy) and degenerative (glaucoma) eye diseases. Although no clinical therapies are in use, mesenchymal stem cells (MSC) have demonstrated significant neuroprotective and axogenic effects on RGC in both of the aforementioned models. Recent evidence has shown that MSC secrete exosomes, membrane enclosed vesicles (30-100 nm) containing proteins, mRNA and miRNA which can be delivered to nearby cells...
January 26, 2017: Stem Cells Translational Medicine
keyword
keyword
101604
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"