Read by QxMD icon Read

vestibular nuclei

Melania Ester Mercado-Pimentel, Craig Miller, Daniela N Rolph, Edrick F Villalobos, Allison M Dunn, Prithvi M Mohan, Suzu Igarashi, Xiangdang Liu, Macken Yrun-Duffy, Neal K Patel, Cecilia M Read, Ross H Francis, Adelina Isabella Lane, Swaroop Murugesh, Abraham Jacob
HYPOTHESIS: p21-activated kinase (PAK) regulates signaling pathways that promote cell survival and proliferation; therefore, pharmacological inhibition of PAK will induce cell death in vestibular schwannomas (VS) and meningiomas. BACKGROUND: All VS and many meningiomas result from loss of the neurofibromatosis type 2 (NF2) gene product merlin, with ensuing PAK hyperactivation and increased cell proliferation/survival. METHODS: The novel small molecule PAK inhibitors PI-8 and PI-15-tested in schwannoma and meningioma cells-perturb molecular signaling and induce cell death...
October 12, 2016: Otology & Neurotology
Bao-Hua Liu, Andrew D Huberman, Massimo Scanziani
The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision...
October 12, 2016: Nature
Masato Yamauchi, Masahito Yamamoto, Kei Kitamura, Masaaki Kasahara, Satoru Matsunaga, Gen Murakami, Shin-Ichi Abe
The vestibular and geniculate ganglia of the ear in experimental animals carry both of the tyrosine hydroxylase (TH)-positive sympathetic neurons and the neuronal nitric oxide synthase (nNOS)-positive parasympathetic neurons. With an aid of immunohistochemistry, we examined these ganglia as well as the horizontal part of the facial nerve using specimens from 10 formalin-fixed elderly cadavers. The submandibular ganglion from the same cadavers was used for the positive control for both markers. Although there was a nonspecific reaction in nuclei for the present antibody of nNOS, these ganglia were unlikely to contain either nNOS- or TH-positive neurons...
2016: Okajimas Folia Anatomica Japonica
M Fetter
Sudden unilateral loss of vestibular function is the most severe condition that can occur in the vestibular system. The clinical syndrome is caused by the physiologic properties of the vestibulo-ocular reflex (VOR) arc. In the normal situation, the two peripheral vestibular end organs are connected to a functional unit in coplanar pairs of semicircular canals working in a push-pull mode. "Push-pull" mode means that, when one side is excited, the other side is inhibited, and vice versa due to two mechanisms...
2016: Handbook of Clinical Neurology
A Kheradmand, A I Colpak, D S Zee
The differential diagnosis of patients with vestibular symptoms usually begins with the question: is the lesion central or is it peripheral? The answer commonly emerges from a careful examination of eye movements, especially when the lesion is located in otherwise clinically silent areas of the brain such as the vestibular portions of the cerebellum (flocculus, paraflocculus which is called the tonsils in humans, nodulus, and uvula) and the vestibular nuclei as well as immediately adjacent areas (the perihypoglossal nuclei and the paramedian nuclei and tracts)...
2016: Handbook of Clinical Neurology
C D Balaban
Neuronal networks that are linked to the peripheral vestibular system contribute to gravitoinertial sensation, balance control, eye movement control, and autonomic function. Ascending connections to the limbic system and cerebral cortex are also important for motion perception and threat recognition, and play a role in comorbid balance and anxiety disorders. The vestibular system also shows remarkable plasticity, termed vestibular compensation. Activity in these networks is regulated by an interaction between: (1) intrinsic neurotransmitters of the inner ear, vestibular nerve, and vestibular nuclei; (2) neurotransmitters associated with thalamocortical and limbic pathways that receive projections originating in the vestibular nuclei; and (3) locus coeruleus and raphe (serotonergic and nonserotonergic) projections that influence the latter components...
2016: Handbook of Clinical Neurology
K E Cullen
The relative simplicity of the neural circuits that mediate vestibular reflexes is well suited for linking systems and cellular levels of analyses. Notably, a distinctive feature of the vestibular system is that neurons at the first central stage of sensory processing in the vestibular nuclei are premotor neurons; the same neurons that receive vestibular-nerve input also send direct projections to motor pathways. For example, the simplicity of the three-neuron pathway that mediates the vestibulo-ocular reflex leads to the generation of compensatory eye movements within ~5ms of a head movement...
2016: Handbook of Clinical Neurology
Inna S Midzyanovskaya, Lidia M Birioukova, Alla B Shatskova, Gilles van Luijtelaar, Leena M Tuomisto
Genetic animal models for convulsive, non-convulsive and mixed types of generalized epilepsies were used to establish putative histaminergic brain sites involved in the control of different types of epilepsy. Age matched rats of the KM strain (audiogenic seizures, AGS), WAG/Rij strain (absence seizures) and the WAG/Rij-AGS substrain (mixed model) were compared with a control group of Wistar rats on regional binding densities of H1 histamine receptors. Coronal slices of adult brains of the four groups were labeled with 3H pyrilamine, an antagonist of H1 histamine receptor and density of receptors was quantified with image analyses...
August 24, 2016: Epilepsy Research
Shawn D Newlands, Min Wei, David Morgan, Hongge Luan
After vestibular labyrinth injury, behavioral measures of vestibular performance recover to variable degrees (vestibular compensation). Central neuronal responses after unilateral labyrinthectomy (UL), which eliminates both afferent resting activity and sensitivity to movement, have been well-studied. However, unilateral semicircular canal plugging (UCP), which attenuates angular-velocity detection while leaving afferent resting activity intact, has not been extensively studied. The current study reports response properties of yaw-sensitive non-eye-movement rhesus macaque vestibular neurons after compensation from UCP...
October 1, 2016: Journal of Neurophysiology
Senthilvelan Manohar, Kimberly Dahar, Henry J Adler, Ding Dalian, Richard Salvi
Severe noise-induced damage to the inner ear leads to auditory nerve fiber degeneration thereby reducing the neural input to the cochlear nucleus (CN). Paradoxically, this leads to a significant increase in spontaneous activity in the CN which has been linked to tinnitus, hyperacusis and ear pain. The biological mechanisms that lead to an increased spontaneous activity are largely unknown, but could arise from changes in glutamatergic or GABAergic neurotransmission or neuroinflammation. To test this hypothesis, we unilaterally exposed rats for 2h to a 126dB SPL narrow band noise centered at 12kHz...
September 2016: Molecular and Cellular Neurosciences
Moslem Shaabani, Yones Lotfi, Seyed Morteza Karimian, Mehdi Rahgozar, Mehdi Hooshmandi
Current experimental research on the therapeutic effects of galvanic vestibular stimulation (GVS) has mainly focused on neurodegenerative disorders. However, it primarily stimulates the vestibular nuclei and could be potentially effective in modulating imbalance between them in the case of unilateral labyrinthectomy (UL). Fifty male Wistar rats (180-220g) were used in 5 groups of 10: intact, sham, right-UL (RUL; without intervention), and two other right-UL groups with GVS intervention [one group treated with low rate GVS (GVS...
October 1, 2016: Brain Research
Andrew A McCall, Derek M Miller, William M DeMayo, George H Bourdages, Bill J Yates
The limbs constitute the sole interface with the ground during most waking activities in mammalian species; it is therefore expected that somatosensory inputs from the limbs provide important information to the central nervous system for balance control. In the decerebrate cat model, the activity of a subset of neurons in the vestibular nuclei (VN) has been previously shown to be modulated by hindlimb movement. However, decerebration can profoundly alter the effects of sensory inputs on the activity of brain stem neurons, resulting in epiphenomenal responses...
October 1, 2016: Journal of Neurophysiology
Gemma Huguet, Elisabet Kadar, Yasin Temel, Lee Wei Lim
The electrical stimulation of specific brain targets has been shown to induce striking antidepressant effects. Despite that recent data have indicated that cerebellum is involved in emotional regulation, the mechanisms by which stimulation improved mood-related behaviors in the cerebellum remained largely obscure. Here, we investigated the stimulation effects of the ventromedial prefrontal cortex (vmPFC), nucleus accumbens (NAc), and lateral habenular nucleus on the c-Fos neuronal activity in various deep cerebellar and vestibular nuclei using the unpredictable chronic mild stress (CMS) animal model of depression...
July 19, 2016: Cerebellum
Adam D Schneider
In vitro studies have previously found a class of vestibular nuclei neurons to exhibit a bidirectional afterhyperpolarization (AHP) in their membrane potential, due to calcium and calcium-activated potassium conductances. More recently in vivo studies of such vestibular neurons were found to exhibit a boosting nonlinearity in their input-output tuning curves. In this paper, a Hodgkin-Huxley (HH) type neuron model, originally developed to reproduce the in vitro AHP, is shown to produce a boosting nonlinearity similar to that seen in vivo for increased the calcium conductance...
2016: PloS One
Gay R Holstein, Victor L Friedrich, Giorgio P Martinelli
Imidazole-4-acetic acid-ribotide (IAARP) is a putative neurotransmitter/modulator and an endogenous regulator of sympathetic drive, notably systemic blood pressure, through binding to imidazoline receptors. IAARP is present in neurons and processes throughout the CNS, but is particularly prevalent in regions that are involved in blood pressure control. The goal of this study was to determine whether IAARP is present in neurons in the caudal vestibular nuclei that participate in the vestibulo-sympathetic reflex (VSR) pathway...
October 2016: Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale
Ragini G Gupta, Claire Schafer, Yolande Ramaroson, Michael G Sciullo, Charles C Horn
The incidence of postoperative nausea and vomiting (PONV) can be as high as 80% in patients with risk factors (e.g., females, history of motion sickness). PONV delays postoperative recovery and costs several hundred million dollars annually. Cell-based assays show that halogenated ethers (e.g., isoflurane) activate 5-HT3 receptors, which are found on gastrointestinal vagal afferents and in the hindbrain - key pathways for producing nausea and vomiting. This project evaluated the role of the vagus and activation of the hindbrain in isoflurane-induced emesis in musk shrews, a small animal model with a vomiting reflex, which is lacking in rats and mice...
July 2, 2016: Autonomic Neuroscience: Basic & Clinical
Sophie Dutheil, Isabelle Watabe, Karina Sadlaoud, Alain Tonetto, Brahim Tighilet
UNLABELLED: Reactive cell proliferation occurs rapidly in the cat vestibular nuclei (VN) after unilateral vestibular neurectomy (UVN) and has been reported to facilitate the recovery of posturo-locomotor functions. Interestingly, whereas animals experience impairments for several weeks, extraordinary plasticity mechanisms take place in the local microenvironment of the VN: newborn cells survive and acquire different phenotypes, such as microglia, astrocytes, or GABAergic neurons, whereas animals eventually recover completely from their lesion-induced deficits...
June 8, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Udo Rüb, Katharina Stratmann, Helmut Heinsen, Domenico Del Turco, Kay Seidel, Wilfred den Dunnen, Horst-Werner Korf
The human brainstem is involved in the regulation of the sleep/waking cycle and normal sleep architectonics and is crucial for the performance of a variety of somatomotor, vital autonomic, oculomotor, vestibular, auditory, ingestive and somatosensory functions. It harbors the origins of the ascending dopaminergic, cholinergic, noradrenergic, serotonergic systems, as well the home base of the descending serotonergic system. In contrast to the cerebral cortex the affection of the brainstem in Alzheimer's disease (AD) by the neurofibrillary or tau cytoskeletal pathology was recognized only approximately fourty years ago in initial brainstem studies...
2016: Current Alzheimer Research
Tana B Carson, Bradley J Wilkes, Kunal Patel, Jill L Pineda, Ji H Ko, Karl M Newell, James W Bodfish, Michael C Schubert, Krestin Radonovich, Keith D White, Mark H Lewis
Sensorimotor processing alterations are a growing focus in the assessment and treatment of Autism Spectrum Disorders (ASD). The rotational vestibulo-ocular reflex (rVOR), which functions to maintain stable vision during head movements, is a sensorimotor system that may be useful in understanding such alterations and their underlying neurobiology. In this study, we assessed post-rotary nystagmus elicited by continuous whole body rotation among children with high-functioning ASD and typically developing children...
May 25, 2016: Autism Research: Official Journal of the International Society for Autism Research
Jack DiGiovanna, T A K Nguyen, Nils Guinand, Angelica Pérez-Fornos, Silvestro Micera
The vestibular system incorporates multiple sensory pathways to provide crucial information about head and body motion. Damage to the semicircular canals, the peripheral vestibular organs that sense rotational velocities of the head, can severely degrade the ability to perform activities of daily life. Vestibular prosthetics address this problem by using stimulating electrodes that can trigger primary vestibular afferents to modulate their firing rates, thus encoding head movement. These prostheses have been demonstrated chronically in multiple animal models and acutely tested in short-duration trials within the clinic in humans...
2016: Frontiers in Bioengineering and Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"