Read by QxMD icon Read


Chiara Masellis, Neelam Khanal, Michael Z Kamrath, David E Clemmer, Thomas R Rizzo
The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously...
June 22, 2017: Journal of the American Society for Mass Spectrometry
Koichi Furukawa, Yuhsuke Ohmi, Shuting Ji, Pu Zhang, Robiul H Bhuiyan, Yuki Ohkawa, Orie Tajima, Noboru Hashimoto, Keiko Furukawa
Gene knockout mice of glycosyltransferases have clearly showed roles of their products in the bodies, while there are examples where phenotype of knockout was much less severe than expected probably due to functional redundancy. The most striking novel finding obtained from ganglioside-deficient mice was that progressive inflammatory reaction took place, leading to neurodegeneration. In particular, dysfunction of complement-regulatory proteins due to deteriorated architecture of lipid rafts seemed to be essential mechanisms for the inflammation...
June 7, 2017: Biochimica et Biophysica Acta
Rob Field
No abstract text is available yet for this article.
June 5, 2017: Carbohydrate Research
Hisako Akiyama, Yoshio Hirabayashi
BACKGROUND: Sterols are major cell membrane lipids, and in many organisms they are modified with glucose to generate sterylglucosides. Glucosylation dramatically changes the functional properties of sterols. The formation of sterylglucosides from sterols in plants, fungi, and bacteria uses UDP-glucose as a glucose donor. By contrast, sterylglucoside biosynthesis in mammals is catalyzed by the transglucosylation activity of glucocerebrosidases, with glucosylceramide acting as the glucose donor...
June 6, 2017: Biochimica et Biophysica Acta
Kazuma Sakamoto, Kenji Kadomatsu
BACKGROUND: Therapeutics specific to neural injury have long been anticipated but remain unavailable. Axons in the central nervous system do not readily regenerate after injury, leading to dysfunction of the nervous system. This failure of regeneration is due to both the low intrinsic capacity of axons for regeneration and the various inhibitors emerging upon injury. After many years of concerted efforts, however, these hurdles to axon regeneration have been partially overcome. SCOPE OF REVIEW: This review summarizes the mechanisms regulating axon regeneration...
June 5, 2017: Biochimica et Biophysica Acta
Heung Sik Hahm, Mark K Schlegel, Mattan Hurevich, Steffen Eller, Frank Schuhmacher, Johanna Hofmann, Kevin Pagel, Peter H Seeberger
Reliable and rapid access to defined biopolymers by automated DNA and peptide synthesis has fundamentally altered biological research and medical practice. Similarly, the procurement of defined glycans is key to establishing structure-activity relationships and thereby progress in the glycosciences. Here, we describe the rapid assembly of oligosaccharides using the commercially available Glyconeer 2.1 automated glycan synthesizer, monosaccharide building blocks, and a linker-functionalized polystyrene solid support...
April 25, 2017: Proceedings of the National Academy of Sciences of the United States of America
Christopher J Gray, Baptiste Schindler, Lukasz G Migas, Martina Pičmanová, Abdul R Allouche, Anthony P Green, Santanu Mandal, Mohammed S Motawia, Raquel Sánchez-Pérez, Nanna Bjarnholt, Birger L Møller, Anouk M Rijs, Perdita E Barran, Isabelle Compagnon, Claire E Eyers, Sabine L Flitsch
The lack of robust, high-throughput, and sensitive analytical strategies that can conclusively map the structure of glycans has significantly hampered progress in fundamental and applied aspects of glycoscience. Resolution of the anomeric α/β glycan linkage within oligosaccharides remains a particular challenge. Here, we show that "memory" of anomeric configuration is retained following gas-phase glycosidic bond fragmentation during tandem mass spectrometry (MS(2)). These findings allow for integration of MS(2) with ion mobility spectrometry (IM-MS(2)) and lead to a strategy to distinguish α- and β-linkages within natural underivatized carbohydrates...
April 6, 2017: Analytical Chemistry
Kristýna Slámová, Pavla Bojarová
BACKGROUND: In recent years, enzymes modifying N-acetylhexosamine substrates have emerged in numerous theoretical studies as well as practical applications from biology, biomedicine, and biotechnology. Advanced enzyme engineering techniques converted them into potent synthetic instruments affording a variety of valuable glycosides. SCOPE OF REVIEW: This review presents the diversity of engineered enzymes active with N-acetylhexosamine carbohydrates: from popular glycoside hydrolases and glycosyltransferases to less known oxidases, epimerases, kinases, sulfotransferases, and acetylases...
August 2017: Biochimica et Biophysica Acta
Stuart McNicholas, Jon Agirre
The close-range interactions provided by covalently linked glycans are essential for the correct folding of glycoproteins and also play a pivotal role in recognition processes. Being able to visualise protein-glycan and glycan-glycan contacts in a clear way is thus of great importance for the understanding of these biological processes. In structural terms, glycosylation sugars glue the protein together via hydrogen bonds, whereas non-covalently bound glycans frequently harness additional stacking interactions...
February 1, 2017: Acta Crystallographica. Section D, Structural Biology
Rob Field
No abstract text is available yet for this article.
January 13, 2017: Carbohydrate Research
Ksenia S Egorova, Philip V Toukach
Glycosyltransferases (GTs) are carbohydrate-active enzymes (CAZy) involved in the synthesis of natural glycan structures. The application of CAZy is highly demanded in biotechnology and pharmaceutics. However, it is being hindered by the lack of high-quality and comprehensive repositories of the research data accumulated so far. In this paper, we describe a new curated Carbohydrate Structure Glycosyltransferase Database (CSDB_GT). Currently, CSDB_GT provides ca. 780 activities exhibited by GTs, as well as several other CAZy, found in Arabidopsis thaliana and described in ca...
December 23, 2016: Glycobiology
Ivan A Gagarinov, Tiehai Li, Javier Sastre Toraño, Tomislav Caval, Apoorva D Srivastava, John A W Kruijtzer, Albert J R Heck, Geert-Jan Boons
Progress in glycoscience is hampered by a lack of well-defined complex oligosaccharide standards that are needed to fabricate the next generation of microarrays, to develop analytical protocols to determine exact structures of isolated glycans, and to elucidate pathways of glycan biosynthesis. We describe here a chemoenzymatic methodology that makes it possible, for the first time, to prepare any bi-, tri-, and tetra-antennary asymmetric N-glycan from a single precursor. It is based on the chemical synthesis of a tetra-antennary glycan that has N-acetylglucosamine (GlcNAc), N-acetyllactosamine (LacNAc), and unnatural Galα(1,4)-GlcNAc and Manβ(1,4)-GlcNAc appendages...
January 18, 2017: Journal of the American Chemical Society
Krishnan K Palaniappan, Carolyn R Bertozzi
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome...
December 14, 2016: Chemical Reviews
Stjepan Krešimir Kračun, Jonatan Ulrik Fangel, Maja Gro Rydahl, Henriette Lodberg Pedersen, Silvia Vidal-Melgosa, William George Tycho Willats
Cell walls are an important feature of plant cells and a major component of the plant glycome. They have both structural and physiological functions and are critical for plant growth and development. The diversity and complexity of these structures demand advanced high-throughput techniques to answer questions about their structure, functions and roles in both fundamental and applied scientific fields. Microarray technology provides both the high-throughput and the feasibility aspects required to meet that demand...
2017: Methods in Molecular Biology
Sachio Yamamoto, Mitsuhiro Kinoshita, Shigeo Suzuki
This review covers the basics and some applications of methodologies for the analysis of glycoprotein glycans. Analytical techniques used for glycoprotein glycans, including liquid chromatography (LC), capillary electrophoresis (CE), mass spectrometry (MS), and high-throughput analytical methods based on microfluidics, were described to supply the essentials about biopharmaceutical and biomarker glycoproteins. We will also describe the MS analysis of glycoproteins and glycopeptides as well as the chemical and enzymatic releasing methods of glycans from glycoproteins and the chemical reactions used for the derivatization of glycans...
October 25, 2016: Journal of Pharmaceutical and Biomedical Analysis
Marta Abellán Flos, M Isabel García Moreno, Carmen Ortiz Mellet, Jose Manuel García Fernández, Jean-Francois Nierengarten, Stéphane P Vincent
Glycosidases are key enzymes in metabolism, pathogenic/antipathogenic mechanisms and normal cellular functions. Recently, a novel approach for glycosidase inhibition that conveys multivalent glycomimetic conjugates has emerged. Many questions regarding the mechanism(s) of multivalent enzyme inhibition remain unanswered. Herein we report the synthesis of a collection of novel homo- and heterovalent glyco(mimetic)-fullerenes purposely conceived for probing the contribution of non-catalytic pockets in glysosidases to the multivalent inhibitory effect...
August 1, 2016: Chemistry: a European Journal
Roman R Kapaev, Philip V Toukach
Glycan Optimized Dual Empirical Spectrum Simulation (GODESS) is a web service, which has been recently shown to be one of the most accurate tools for simulation of (1)H and (13)C 1D NMR spectra of natural carbohydrates and their derivatives. The new version of GODESS supports visualization of the simulated (1)H and (13)C chemical shifts in the form of most 2D spin correlation spectra commonly used in carbohydrate research, such as (1)H-(1)H TOCSY, COSY/COSY-DQF/COSY-RCT, and (1)H-(13)C edHSQC, HSQC-COSY, HSQC-TOCSY, and HMBC...
June 27, 2016: Journal of Chemical Information and Modeling
Larissa Krasnova, Chi-Huey Wong
Glycoscience research has been significantly impeded by the complex compositions of the glycans present in biological molecules and the lack of convenient tools suitable for studying the glycosylation process and its function. Polysaccharides and glycoconjugates are not encoded directly by genes; instead, their biosynthesis relies on the differential expression of carbohydrate enzymes, resulting in heterogeneous mixtures of glycoforms, each with a distinct physiological activity. Access to well-defined structures is required for functional study, and this has been provided by chemical and enzymatic synthesis and by the engineering of glycosylation pathways...
June 2, 2016: Annual Review of Biochemistry
Robert Sackstein
No abstract text is available yet for this article.
June 2016: Glycobiology
Ronald L Schnaar
Glycans and complementary glycan-binding proteins are essential components in the language of cell-cell interactions in immunity. The study of glycan function is the purview of glycobiology, which has often been presented as an unusually complex discipline. In fact, the human glycome, composed of all of its glycans, is built primarily from only 9 building blocks that are combined by enzymes (writers) with specific and limited biosynthetic capabilities into a tractable and increasingly accessible number of potential glycan patterns that are functionally read by several dozen human glycan-binding proteins (readers)...
June 2016: Journal of Leukocyte Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"