Read by QxMD icon Read

textile electrochemical sensor

Kobun Rovina, Shafiquzzaman Siddiquee, Sharifudin Md Shaarani
Tartrazine is an azo food dye, orange-coloured and water soluble that usually used in foods, pharmaceuticals, cosmetics, and textiles. Tartrazine possess adverse health effect to human such as hyperactivity in children, allergy and asthma. Joint FAO/WHO Expert Committee on Food Additive (JECFA) and EU Scientific Committee for Food (SCF) standardized the acceptable daily intake (ADI) for Tartrazine is at 7.5 mg kg(-1) body weight. Many researchers have been detected the presence of Tartrazine for monitoring the quality and safety of food products...
January 27, 2017: Critical Reviews in Analytical Chemistry
Amay J Bandodkar, Cristian S López, Allibai Mohanan Vinu Mohan, Lu Yin, Rajan Kumar, Joseph Wang
The present work demonstrates the synthesis and application of permanent magnetic Nd2Fe14B microparticle (NMP)-loaded graphitic inks for realizing rapidly self-healing inexpensive printed electrochemical devices. The incorporation of NMPs into the printable ink imparts impressive self-healing ability to the printed conducting trace, with rapid (~50 ms) recovery of repeated large (3 mm) damages at the same or different locations without any user intervention or external trigger. The permanent and surrounding-insensitive magnetic properties of the NMPs thus result in long-lasting ability to repair extreme levels of damage, independent of ambient conditions...
November 2016: Science Advances
I Gualandi, M Marzocchi, A Achilli, D Cavedale, A Bonfiglio, B Fraboni
The development of wearable chemical sensors is receiving a great deal of attention in view of non-invasive and continuous monitoring of physiological parameters in healthcare applications. This paper describes the development of a fully textile, wearable chemical sensor based on an organic electrochemical transistor (OECT) entirely made of conductive polymer (PEDOT:PSS). The active polymer patterns are deposited into the fabric by screen printing processes, thus allowing the device to actually "disappear" into it...
September 26, 2016: Scientific Reports
Xiyuan Liu, Peter B Lillehoj
Electrochemical sensors are powerful analytical tools which possess the capacity for rapid detection of biomarkers in clinical specimens. While most electrochemical sensors are fabricated on rigid substrates, there is a growing need for sensors that can be manufactured on inexpensive and flexible materials. Here, we present a unique embroidered electrochemical sensor that is capable of quantitative analytical measurements using raw biofluid samples. Conductive threads immobilized with enzyme probes were generated using a simple and robust fabrication process and used to fabricate flexible, mechanically robust electrodes on textiles...
May 24, 2016: Lab on a Chip
Tripurari Choudhary, G P Rajamanickam, Dhananjaya Dendukuri
We present textile weaving as a new technique for the manufacture of miniature electrochemical sensors with significant advantages over current fabrication techniques. Biocompatible silk yarn is used as the material for fabrication instead of plastics and ceramics used in commercial sensors. Silk yarns are coated with conducting inks and reagents before being handloom-woven as electrodes into patches of fabric to create arrays of sensors, which are then laminated, cut and packaged into individual sensors. Unlike the conventionally used screen-printing, which results in wastage of reagents, yarn coating uses only as much reagent and ink as required...
May 7, 2015: Lab on a Chip
Radhakrishnan Sridhar, Subramanian Sundarrajan, Jayarama Reddy Venugopal, Rajeswari Ravichandran, Seeram Ramakrishna
Engineered nanofibers are generally focused on filtration, solar cells, sensors, smart textile fabrication, tissue engineering, etc. Electrospun nanofibers have potential advantages in tissue engineering and regenerative medicine, because of the ease in the incorporation of drugs, growth factors, natural materials, and inorganic nanoparticles in to these nanofiber scaffolds. Electrospun nanofiber scaffolds composed of synthetic and natural polymers are being explored as scaffolds similar to natural extracellular matrix for tissue engineering...
2013: Journal of Biomaterials Science. Polymer Edition
Jonas Flueckiger, Frank K Ko, Karen C Cheung
Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors...
2009: Sensors
Yang-Li Yang, Min-Chieh Chuang, Shyh-Liang Lou, Joseph Wang
The incorporation of amperometric sensors into clothing through direct screen-printing onto the textile substrate is described. Particular attention is given to electrochemical sensors printed directly on the elastic waist of underwear that offers tight direct contact with the skin. The textile-based printed carbon electrodes have a well-defined appearance with relatively smooth conductor edges and no apparent defects or cracks. Convenient voltammetric and chronoamperometric measurements of 0-3 mM ferrocyanide, 0-25 mM hydrogen peroxide, and 0-100 muM NADH have been documented...
June 2010: Analyst
Zhigang Zhu, Wenhui Song, Krishna Burugapalli, Francis Moussy, Ya-Li Li, Xiao-Hua Zhong
A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 microm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure...
April 23, 2010: Nanotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"