Read by QxMD icon Read


Alexander Giovannitti, Christian B Nielsen, Dan-Tiberiu Sbircea, Sahika Inal, Mary Donahue, Muhammad R Niazi, David A Hanifi, Aram Amassian, George G Malliaras, Jonathan Rivnay, Iain McCulloch
Organic electrochemical transistors (OECTs) are receiving significant attention due to their ability to efficiently transduce biological signals. A major limitation of this technology is that only p-type materials have been reported, which precludes the development of complementary circuits, and limits sensor technologies. Here, we report the first ever n-type OECT, with relatively balanced ambipolar charge transport characteristics based on a polymer that supports both hole and electron transport along its backbone when doped through an aqueous electrolyte and in the presence of oxygen...
October 7, 2016: Nature Communications
Zahra Hemmatian, Scott Keene, Erik Josberger, Takeo Miyake, Carina Arboleda, Jessica Soto-Rodríguez, François Baneyx, Marco Rolandi
In biological systems, intercellular communication is mediated by membrane proteins and ion channels that regulate traffic of ions and small molecules across cell membranes. A bioelectronic device with ion channels that control ionic flow across a supported lipid bilayer (SLB) should therefore be ideal for interfacing with biological systems. Here, we demonstrate a biotic-abiotic bioprotonic device with Pd contacts that regulates proton (H(+)) flow across an SLB incorporating the ion channels Gramicidin A (gA) and Alamethicin (ALM)...
October 7, 2016: Nature Communications
Xiao Xia Han, Junbo Li, Ibrahim Halil Öner, Bing Zhao, Silke Leimkühler, Peter Hildebrandt, Inez M Weidinger
Practical use of many bioelectronic and bioanalytical devices is limited by the need of expensive materials and time consuming fabrication. Here we demonstrate the use of nickel electrodes as a simple and cheap solid support material for bioelectronic applications. The naturally nanostructured electrodes showed a surprisingly high electromagnetic surface enhancement upon light illumination such that immobilization and electron transfer reactions of the model redox proteins cytochrome b5 (Cyt b5) and cytochrome c (Cyt c) could be followed via surface enhanced resonance Raman spectroscopy...
October 19, 2016: Analytica Chimica Acta
Vincent M Friebe, David J K Swainsbury, Paul K Fyfe, Wessel van der Heijden, Michael R Jones, Raoul N Frese
Upon photoexcitation, the reaction center (RC) pigment-proteins that facilitate natural photosynthesis achieve a metastable separation of electrical charge among the embedded cofactors. Because of the high quantum efficiency of this process, there is a growing interest in their incorporation into biohybrid materials for solar energy conversion, bioelectronics and biosensing. Multiple bioelectrochemical studies have shown that reaction centers from various photosynthetic organisms can be interfaced with diverse electrode materials for the generation of photocurrents, but many mechanistic aspects of native protein functionality in a non-native environment is unknown...
September 28, 2016: Biochimica et Biophysica Acta
Cancan Xu, Yihui Huang, Gerardo Yepez, Zi Wei, Fuqiang Liu, Alejandro Bugarin, Liping Tang, Yi Hong
Conductive biodegradable materials are of great interest for various biomedical applications, such as tissue repair and bioelectronics. They generally consist of multiple components, including biodegradable polymer/non-degradable conductive polymer/dopant, biodegradable conductive polymer/dopant or biodegradable polymer/non-degradable inorganic additives. The dopants or additives induce material instability that can be complex and possibly toxic. Material softness and elasticity are also highly expected for soft tissue repair and soft electronics...
September 30, 2016: Scientific Reports
Manki Son, Daesan Kim, Hwi Jin Ko, Seunghun Hong, Tai Hyun Park
A multiplexed bioelectronic sensor was developed for the purpose of rapid, on-site, and simultaneous detection of various target molecules. Olfactory and taste receptors were produced in Escherichia coli, and the reconstituted receptors were immobilized onto a multi-channel type carbon nanotube field-effect transistor. This device mimicked the human olfactory/taste system and simultaneously measured the conductance changes with high sensitivity and selectivity following treatment with various odor and taste molecules commonly known to be indicators of food contamination...
September 17, 2016: Biosensors & Bioelectronics
María Díaz-González, J Pablo Salvador, Diana Bonilla, M Pilar Marco, César Fernández-Sánchez, Antonio Baldi
No abstract text is available yet for this article.
September 19, 2016: Biosensors & Bioelectronics
Ai-Wei Lee, Cheng-Chen Hsu, Yi-Zu Liu, Po-Li Wei, Jem-Kun Chen
In this study we used the poly(N-isopropylacrylamide) (PNIPAAm) as a medium to blend with an organic DNA, herring sperm DNA (HSD), to generate PNIPAAm-HSD supramolecular complexes. Bio-multiple hydrogen bonding (BMHB) between PNIPAAm and HSD was investigated that changed the temperature responsiveness of PNIPAAm relatively to the HSD concentrations. With blending the HSD into PNIPAAm matrix, the phase separation in solution is completely opposite from that of neat PNIPAAm. Surface property in static water contact angle (SWCA) is also opposite from that of pure PNIPAAm upon increasing HSD content over 60%...
September 12, 2016: Colloids and Surfaces. B, Biointerfaces
Kamil Awsiuk, Andrzej Budkowski, Panagiota Petrou, Mateusz M Marzec, Monika Biernat, Teresa Jaworska-Gołąb, Jakub Rysz
Many of bioelectronic and biosensor applications are based on poly(3-alkylthiophenes), conducting and solution-processable polymers. The most facile approach for the fabrication of such devices relies on biofunctionalization of P3AT surfaces with antibodies through adsorption. The success of this approach depends critically on antibody orientation that affects its biorecognition. As demonstrated here both these features are controlled by the surface structure of spin-cast P3ATs. In particular, a multi-technique and multivariate study that involved Atomic Force Microscopy, Grazing Incidence X-ray Diffraction, Angle-Resolved X-ray Photoelectron Spectroscopy, Enzyme-Linked ImmunoSorbent Assay, and Time-of-Flight Secondary Ion Mass Spectrometry combined with Principal Component Analysis is conducted in order to deduce the crystalline texture of three P3AT polymers as well as its effect on orientation of adsorbed rabbit immunoglobulin (IgG) molecules...
August 20, 2016: Colloids and Surfaces. B, Biointerfaces
Reinhard I Boysen, Lachlan J Schwarz, Dan V Nicolau, Milton T W Hearn
This review describes recent advances associated with the development of surface imprinting methods for the synthesis of polymeric membranes and thin films, which possess the capability to selectively and specifically recognize biomacromolecules, such as proteins and single- and double-stranded DNA, employing "epitope" or "whole molecule" approaches. Synthetic procedures to create different molecularly imprinted polymer membranes or thin films are discussed, including grafting/in situ polymerization, drop-, dip-, or spin-coating procedures, electropolymerization as well as micro-contact or stamp lithography imprinting methods...
September 12, 2016: Journal of Separation Science
Yong Lin Kong, Maneesh K Gupta, Blake N Johnson, Michael C McAlpine
The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive...
June 2016: Nano Today
Tomasz Wasilewski, Jacek Gębicki, Wojciech Kamysz
A characteristic feature of human and animal organs of smell is the ability to identify hundreds of thousands of odours. It is accompanied by particular smell sensations, which are a basic source of information about odour mixture. The main structural elements of biological smell systems are the olfactory receptors. Small differences in a structure of odorous molecules (odorants) can lead to significant change of odour, which is due to the fact that each of the olfactory receptors is coded with different gene and usually corresponds to different type of odour...
August 26, 2016: Biosensors & Bioelectronics
Wai-Yip Lo, Na Zhang, Zhengxu Cai, Lianwei Li, Luping Yu
As the semiconductor companies officially abandoned the pursuit of Moore's law, the limitation of silicone-based semiconductor electronic devices is approaching. Single molecular devices are considered as a potential solution to overcome the physical barriers caused by quantum interferences because the intermolecular interactions are mainly through weak van der Waals force between molecular building blocks. In this bottom-up approach, components are built from atoms up, allowing great control over the molecular properties...
September 20, 2016: Accounts of Chemical Research
Bahareh Ghane-Motlagh, Taraneh Javanbakht, Fatemeh Shoghi, Kevin J Wilkinson, Richard Martel, Mohamad Sawan
Silicon micromachined neural electrode arrays, which act as an interface between bioelectronic devices and neural tissues, play an important role in chronic implants, in vivo. The biological compatibility of chronic microelectrode arrays (MEA) is an essential factor that must be taken into account in their design and fabrication. In order to improve biocompatibility of the MEAs, the surface of the electrodes was coated with polyethylene glycol (PEG) and parylene-C, which are biocompatible polymers. An in vitro study was performed to test the capacity of poly-d-lysine (PDL) to improve neural-cell adhesion and proliferation...
November 1, 2016: Materials Science & Engineering. C, Materials for Biological Applications
Amanda Jonsson, Sahika Inal, Llke Uguz, Adam J Williamson, Loïg Kergoat, Jonathan Rivnay, Dion Khodagholy, Magnus Berggren, Christophe Bernard, George G Malliaras, Daniel T Simon
Local control of neuronal activity is central to many therapeutic strategies aiming to treat neurological disorders. Arguably, the best solution would make use of endogenous highly localized and specialized regulatory mechanisms of neuronal activity, and an ideal therapeutic technology should sense activity and deliver endogenous molecules at the same site for the most efficient feedback regulation. Here, we address this challenge with an organic electronic multifunctional device that is capable of chemical stimulation and electrical sensing at the same site, at the single-cell scale...
August 23, 2016: Proceedings of the National Academy of Sciences of the United States of America
Heinz-Georg Jahnke, Dana Krinke, Diana Seidel, Katharina Lilienthal, Sabine Schmidt, Ronny Azendorf, Michael Fischer, Till Mack, Frank Striggow, Holger Althaus, Andreas Schober, Andrea A Robitzki
Over the last decades, countless bioelectronic monitoring systems were developed for the analysis of cells as well as complex tissues. Most studies addressed the sensitivity and specificity of the bioelectronic detection method in comparison to classical molecular biological assays. In contrast, the up scaling as a prerequisite for the practical application of these novel bioelectronic monitoring systems is mostly only discussed theoretically. In this context, we developed a novel 384-multiwell microelectrode array (MMEA) based measurement system for the sensitive label-free real-time monitoring of neurodegenerative processes by impedance spectroscopy...
July 25, 2016: Biosensors & Bioelectronics
Dongjin Seo, Ryan M Neely, Konlin Shen, Utkarsh Singhal, Elad Alon, Jan M Rabaey, Jose M Carmena, Michel M Maharbiz
The emerging field of bioelectronic medicine seeks methods for deciphering and modulating electrophysiological activity in the body to attain therapeutic effects at target organs. Current approaches to interfacing with peripheral nerves and muscles rely heavily on wires, creating problems for chronic use, while emerging wireless approaches lack the size scalability necessary to interrogate small-diameter nerves. Furthermore, conventional electrode-based technologies lack the capability to record from nerves with high spatial resolution or to record independently from many discrete sites within a nerve bundle...
August 3, 2016: Neuron
Gareth Iacobucci
No abstract text is available yet for this article.
2016: BMJ: British Medical Journal
Asif Khan, Zafar Abas, Heung Soo Kim, Jaehwan Kim
We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained...
2016: Sensors
Thomas A Celano, David J Hill, Xing Zhang, Christopher W Pinion, Joseph D Christesen, Cory J Flynn, James R McBride, James F Cahoon
Semiconductor nanowires (NWs) have been demonstrated as a potential platform for a wide-range of technologies, yet a method to interconnect functionally encoded NWs has remained a challenge. Here, we report a simple capillarity-driven and self-limited welding process that forms mechanically robust and Ohmic inter-NW connections. The process occurs at the point-of-contact between two NWs at temperatures 400-600 °C below the bulk melting point of the semiconductor. It can be explained by capillarity-driven surface diffusion, inducing a localized geometrical rearrangement that reduces spatial curvature...
August 10, 2016: Nano Letters
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"