Read by QxMD icon Read

conductive polymers

Liang Zeng, Jing Lin, Liping Huang
Because the time reversal operator of Lamb waves varies with frequency in composite structures, the reconstructed signal deviates from the input signal even in undamaged cases. The damage index captures the discrepancy between the two signals without differentiating the effects of time reversal operator from those of damage. This results in the risk of false alarm. To solve this issue, a modified time reversal method (MTRM) is proposed. In this method, the frequency dependence of the time reversal operator is compensated by two steps...
April 26, 2017: Sensors
Lei Chen, Huiying Yan, Xiangxin Xue, Dayu Jiang, Yuxi Cai, Dongmei Liang, Young Mee Jung, Xiao Xia Han, Bing Zhao
In this work, we designed a process to assemble gold nanoparticles onto a three-dimensional (3D) polymer surface, which can then be monitored using surface-enhanced Raman scattering (SERS). This work is the first demonstration of the assembly of gold nanoparticles on a filter film and in situ measurement with Raman spectroscopy. Herein, a polyhexamethylene adipamide (Nylon66) film embedded in the organic filter film was used as a template to fabricate a tunable SERS-active substrate. A "hotspot"-rich gold-nanoparticle-decorated polymer substrate for SERS was prepared; this substrate exhibited high sensitivity in trace detection of targets...
January 1, 2017: Applied Spectroscopy
Thijs Bosker, Paul Behrens, Martina G Vijver
Microplastics (<5 mm) are contaminants of emerging global concern. They have received considerable attention in scientific research, resulting in an increased awareness of the issue among politicians and the general public. However, there has been significant variation in sampling and extraction procedures used to quantify microplastics levels. The difference in extraction procedures can especially impact study outcomes, making it difficult, and sometimes impossible, to directly compare results among studies...
May 2017: Integrated Environmental Assessment and Management
Guilong Wang, Chongda Wang, Jinchuan Zhao, Guizhen Wang, Chul B Park, Guoqun Zhao
Superinsulating materials play a pivotal role in achieving the sustainable development of our modern world by improving energy efficiency, and reducing energy consumption and CO2 emission. Nanocellular polymer foams have been considered as a promising superinsulating material, but their development is yet to be achieved. The understanding of thermal transport through the nanocellular foam is crucial for developing this superinsulating material. Herein, we report an accurate mathematical model for the first time to quantitatively estimate thermal transport through the nanocellular polymer foam...
April 25, 2017: Nanoscale
Qiyan Zhang, Jingxia Wang, Jian Yu, Zhao-Xia Guo
The electrical percolation threshold of carbon black (CB) in thermoplastic polyurethane (TPU) decreases by 46% with the incorporation of 20 wt% polyamide copolymer (COPA) through selective localization of CB particles at the interface of sea-island structured TPU/COPA blends. Composites with a composition of TPU/20 wt% COPA/9 wt% CB were prepared by four different mixing sequences and their morphologies were investigated by FESEM and TEM. The majority of CB particles were observed at the interface of sea-island structured blends irrespective of the compounding sequence used, although the percentage of CB particles at the interface is considerably less in the composite prepared by adding COPA to premixed TPU/CB...
April 25, 2017: Soft Matter
Miki Osaka, Daisuke Mori, Hiroaki Benten, Hiroki Ogawa, Hideo Ohkita, Shinzaburo Ito
Charge transport in intermixed regions of all-polymer solar cells based on a blend of poly(3-hexylthiophene) (P3HT; electron donor) with poly[2,7-(9,9-didodecylfluorene)-alt-5,5-(4',7'-bis(2-thienyl)-2',1',3'-benzothiadiazole)] (PF12TBT; electron acceptor) was studied by conductive atomic force microscopy (C-AFM). For a blend film fabricated from a chlorobenzene solution, intermixed regions were detected between the P3HT-rich and PF12TBT-rich domains. The overall hole current in the intermixed regions remained almost constant, both before and after thermal annealing at 80 C, but it increased in the P3HT-rich domains...
April 24, 2017: ACS Applied Materials & Interfaces
Renee Kroon, David Kiefer, Dominik Stegerer, Liyang Yu, Michael Sommer, Christian Müller
Molecular doping of organic semiconductors is critical for optimizing a range of optoelectronic devices such as field-effect transistors, solar cells, and thermoelectric generators. However, many dopant:polymer pairs suffer from poor solubility in common organic solvents, which leads to a suboptimal solid-state nanostructure and hence low electrical conductivity. A further drawback is the poor thermal stability through sublimation of the dopant. The use of oligo ethylene glycol side chains is demonstrated to significantly improve the processability of the conjugated polymer p(g4 2T-T)-a polythiophene-in polar aprotic solvents, which facilitates coprocessing of dopant:polymer pairs from the same solution at room temperature...
April 24, 2017: Advanced Materials
Ri-Chao Zhang, Dan Sun, Ruirui Zhang, Wen-Feng Lin, Manuel Macias-Montero, Jenish Patel, Sadegh Askari, Calum McDonald, Davide Mariotti, Paul Maguire
Conductive polymers have been increasingly used as fuel cell catalyst support due to their electrical conductivity, large surface areas and stability. The incorporation of metal nanoparticles into a polymer matrix can effectively increase the specific surface area of these materials and hence improve the catalytic efficiency. In this work, a nanoparticle loaded conductive polymer nanocomposite was obtained by a one-step synthesis approach based on room temperature direct current plasma-liquid interaction. Gold nanoparticles were directly synthesized from HAuCl4 precursor in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)...
April 24, 2017: Scientific Reports
Wan Shou, Bikram K Mahajan, Brandon Ludwig, Xiaowei Yu, Joshua Staggs, Xian Huang, Heng Pan
Currently, bioresorbable electronic devices are predominantly fabricated by complex and expensive vacuum-based integrated circuit (IC) processes. Here, a low-cost manufacturing approach for bioresorbable conductors on bioresorbable polymer substrates by evaporation-condensation-mediated laser printing and sintering of Zn nanoparticle is reported. Laser sintering of Zn nanoparticles has been technically difficult due to the surface oxide on nanoparticles. To circumvent the surface oxide, a novel approach is discovered to print and sinter Zn nanoparticle facilitated by evaporation-condensation in confined domains...
April 24, 2017: Advanced Materials
Chi Lu, Seongjun Park, Thomas J Richner, Alexander Derry, Imogen Brown, Chong Hou, Siyuan Rao, Jeewoo Kang, Chet T Mortiz, Yoel Fink, Polina Anikeeva
Studies of neural pathways that contribute to loss and recovery of function following paralyzing spinal cord injury require devices for modulating and recording electrophysiological activity in specific neurons. These devices must be sufficiently flexible to match the low elastic modulus of neural tissue and to withstand repeated strains experienced by the spinal cord during normal movement. We report flexible, stretchable probes consisting of thermally drawn polymer fibers coated with micrometer-thick conductive meshes of silver nanowires...
March 2017: Science Advances
Vidhya Selvanathan, Ahmad Danial Azzahari, Adyani Azizah Abd Halim, Rosiyah Yahya
A first-of-its-kind, eco-friendly quasi-solid bioelectrolyte derived from potato starch was prepared. Starch was chemically modified via phthaloylation to synthesize amorphous, hydrophobic starch derivative and the attachment of the phthaloyl group was confirmed via FTIR which showed phthalate ester peak at 1715cm(-1); and (1)H NMR peaks between 7.30-7.90ppm attributed to the aromatic protons of the phthaloyl group. The resulting starch derivative was then infused with ternary natural deep eutectic solvent (NADES) made from different molar ratios of choline chloride, urea and glycerol...
July 1, 2017: Carbohydrate Polymers
Abdelmoumin Zoghbi, Tianjiao Geng, Bo Wang
Carvedilol (CAR) is a non-selective α and β blocker categorized as class II drug with low water solubility. Several recent studies have investigated ways to overcome this problem. The aim of the present study was to combine two of these methods: the inclusion complex using hydroxypropyl-β-cyclodextrin (HPβCD) with solid dispersion using two carriers: Poloxamer 188 (PLX) and Polyvinylpyrrolidone K-30 (PVP) to enhance the solubility, bioavailability, and the stability of CAR. Kneading method was used to prepare CAR-HPβCD inclusion complex (KD)...
April 21, 2017: AAPS PharmSciTech
Huiqiang Wang, Xin Gao, Zhanfang Ma
Poly(thionine)-Au, a novel multifunctional substrate with excellent redox signal, enzyme-like activity, and easy antibody immobilisation, was synthesised using HAuCl4 as the oxidising agent and thionine as the monomer. The prepared poly(thionine)-Au composite exhibited an admirable electrochemical redox signal at -0.15 V and excellent H2O2 catalytic ability. In addition, gold nanoparticles in this composite were found to directly immobilise antibodies and further improve conductivity. In addition, a label-free electrochemical immunosensor was developed using poly(thionine)-Au as the sensing substrate for ultrasensitive detection of cytokeratin antigen 21-1 (CYFRA 21-1), an immunoassay found in human serum...
April 21, 2017: Scientific Reports
B Dong, A Oyelade, J A Kelber
Semiconducting boron carbides based on cross-linked carborane (B10C2H12) icosahedra, developed several decades ago, are of significant interest in a variety of emerging areas, including photocatalysis, spintronics, and especially neutron detection. These materials, however, display generally poor charge carrier mobility, high defect levels and other properties that pose significant drawbacks. A class of nanocomposite carborane-based materials has recently been developed, that addresses many of these issues...
April 21, 2017: Physical Chemistry Chemical Physics: PCCP
Dengpan Dong, Justin B Hooper, Dmitry Bedrov
Understanding the behavior of aqueous solutions containing tetra-alkyl ammonium (TAA) cations is of great significance in a number of applications, including polymer membranes for fuel cells. In this work, a polarizable force field has been used to preform atomistic molecular dynamics (MD) simulations of aqueous solutions containing tetra-methyl ammonium (TMA) or tetra-butyl ammonium (TBA) cations and Br counterions. Extensive MD simulations of TMA-Br/water and TBA-Br/water systems were conducted as a function of solution composition (ion pair : water molar ratios of 1:10, 1:20, 1:30, 1:63, 1:500) at atmospheric pressure and 298K...
April 20, 2017: Journal of Physical Chemistry. B
Sujay A Chopade, Jesus G Au, Ziang Li, Peter W Schmidt, Marc A Hillmyer, Timothy P Lodge
Mechanically robust polymer electrolyte membranes (PEMs) exhibiting high ionic conductivity at ambient temperature are a prerequisite for next-generation electrochemical devices. We utilized a polymerization-induced microphase separation (PIMS) strategy to prepare nanostructured materials comprising continuous conducting nanochannels intertwined with a mechanically and thermally robust cross-linked polymeric framework. Addition of succinonitrile (SN) rendered the poly(ethylene oxide)/lithium (Li) salt conducting domains completely amorphous, resulting in outstanding conductivities (∼0...
April 20, 2017: ACS Applied Materials & Interfaces
Ludwig Gutzweiler, Tobias Gleichmann, Laurent Tanguy, Peter Koltay, Roland Zengerle, Lutz Riegger
Gel electrophoresis is one of the most applied and standardized tools for separation and analysis of macromolecules and their fragments in academic research and in industry. In this work we present a novel approach for conducting on-demand electrophoretic separations of DNA molecules in open microfluidic (OM) systems on planar polymer substrates. The approach combines advantages of slab gel, capillary- & chip-based methods offering low consumable costs (<0.1 $) circumventing cost intensive microfluidic chip fabrication, short process times (5 minutes per analysis) and high sensitivity (4 ng/μl dsDNA) combined with reasonable resolution (17 bases)...
April 20, 2017: Electrophoresis
Alan Luna, Mickael Pruvost, Jinkai Yuan, Cécile Zakri, Wilfrid Neri, Cecile Monteux, Philippe Poulin, Annie Colin
Using an emulsion road and optimizing the dispersion process, we prepare polymer carbone nanotubes (CNT) and polymer reduced graphene oxyde (rGO) composites. The introduction of conductive nanoparticles into polymer matrices modifies the electronic properties of the material. We show that these materials exhibit giant electrostriction coefficient in the intermediate filler concentration (below 1wt %). This makes them very promising for applications including such as capacitive sensors and actuators. In addition, the values of the piezoresistivity measured in the high filler concentration situation, are at least an order of magnitude greater than the one reported in the literature...
April 20, 2017: Langmuir: the ACS Journal of Surfaces and Colloids
Yu Zhang, Yanshan Huang, Guanhui Yang, Fanxing Bu, Ke Li, Imran Shakir, Yuxi Xu
Polymer cathode materials are promising alternatives to inorganic counterparts for both lithium ion batteries (LIBs) and sodium ion batteries (SIBs) due to their high theoretical capacity, adjustable molecular structure and strong adaptability to different counter-ions in batteries, etc. However, they suffer from poor practical capacity and low rate capability because of their intrinsically poor conductivity. Herein, we report the synthesis of self-assembled graphene/poly(anthraquinonyl sufide) (PAQS) composite aerogel (GPA) with efficient integration of three-dimensional (3D) graphene framework with electroactive PAQS particles via a novel dispersion-assembly strategy, which can be used as a free-standing flexible cathode upon mechanical pressing...
April 20, 2017: ACS Applied Materials & Interfaces
Chao Yang, Zhuang Liu, Chen Chen, Kun Shi, Lei Zhang, Xiao-Jie Ju, Wei Wang, Rui Xie, Liang-Yin Chu
A novel reduced graphene oxide/poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) (rGO/poly(AMPS-co-AAm)) nanocomposite hydrogel that possesses excellent electro-response and mechanical properties has been successfully developed. The rGO nanosheets that homogeneously dispersed in the hydrogels could provide prominent conductive platforms for promoting the ion transport inside the hydrogels to generate significant osmotic pressure between the outside and inside of such nanocomposite hydrogels. Thus, the electro-responsive rate and degree of the hydrogel for both deswelling and bending performances become rapid and remarkable...
April 25, 2017: ACS Applied Materials & Interfaces
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"