Read by QxMD icon Read

stretchable electronics

Juan Zhao, Zhihe Chi, Zhan Yang, Xiaojie Chen, Michael S Arnold, Yi Zhang, Jiarui Xu, Zhenguo Chi, Matthew P Aldred
Truly stretchable electronics, wherein all components themselves permit elastic deformation as the whole devices are stretched, exhibit unique advantages over other strategies, such as simple fabrication process, high integrity of entire components and intimate integration with curvilinear surfaces. In contrast to the stretchable devices using stretchable interconnectors to integrate with rigid active devices, truly stretchable devices are realized with or without intentionally employing structural engineering (e...
March 15, 2018: Nanoscale
Matthew J Catenacci, Christopher Reyes, Mutya A Cruz, Benjamin J Wiley
Materials that retain a high conductivity under strain are essential for wearable electronics. This article describes a conductive, stretchable composite consisting of a Cu-Ag core-shell nanowire felt infiltrated with a silicone elastomer. This composite exhibits a retention of conductivity under strain that is superior to any composite with a conductivity greater than 1000 S cm-1 . This work also shows how the mechanical properties, conductivity, and deformation mechanism of the composite changes as a function of the stiffness of the silicone matrix...
March 14, 2018: ACS Nano
Zheng Cui, Yiwei Han, Qijin Huang, Jingyan Dong, Yong Zhu
A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc...
March 14, 2018: Nanoscale
Ruike Zhao, Shaoting Lin, Hyunwoo Yuk, Xuanhe Zhao
Structures of thin films bonded on substrates have been used in technologies as diverse as flexible electronics, soft robotics, bio-inspired adhesives, thermal-barrier coatings, medical bandages, wearable devices and living devices. The current paradigm for maintaining adhesion of films on substrates is to make the films thinner, and more compliant and adhesive, but these requirements can compromise the function or fabrication of film-substrate structures. For example, there are limits on how thin, compliant and adhesive epidermal electronic devices can be fabricated and still function reliably...
March 14, 2018: Soft Matter
Hyosung An, Touseef Habib, Smit Shah, Huili Gao, Miladin Radovic, Micah J Green, Jodie L Lutkenhaus
Stretchable, bendable, and foldable conductive coatings are crucial for wearable electronics and biometric sensors. These coatings should maintain functionality while simultaneously interfacing with different types of surfaces undergoing mechanical deformation. MXene sheets as conductive two-dimensional nanomaterials are promising for this purpose, but it is still extremely difficult to form surface-agnostic MXene coatings that can withstand extreme mechanical deformation. We report on conductive and conformal MXene multilayer coatings that can undergo large-scale mechanical deformation while maintaining a conductivity as high as 2000 S/m...
March 2018: Science Advances
Jiangxin Wang, Guofa Cai, Shaohui Li, Dace Gao, Jiaqing Xiong, Pooi See Lee
Stretchable conductors are vital and indispensable components in soft electronic systems. The development for stretchable conductors has been highly motivated with different approaches established to address the dilemma in the conductivity and stretchability trade-offs to some extent. Here, a new strategy to achieve superelastic conductors with high conductivity and stable electrical performance under stretching is reported. It is demonstrated that by electrically anchoring conductive fillers with eutectic gallium indium particles (EGaInPs), significant improvement in stretchability and durability can be achieved in stretchable conductors...
March 7, 2018: Advanced Materials
Steven Nagels, Wim Deferme
Stretchable electronics promise to naturalize the way that we are surrounded by and interact with our devices. Sensors that can stretch and bend furthermore have become increasingly relevant as the technology behind them matures rapidly from lab-based workflows to industrially applicable production principles. Regardless of the specific materials used, creating stretchable conductors involves either the implementation of strain reliefs through insightful geometric patterning, the dispersion of stiff conductive filler in an elastomeric matrix, or the employment of intrinsically stretchable conductive materials...
March 3, 2018: Materials
Xiaojing Su, Hongqiang Li, Xuejun Lai, Zhonghua Chen, Xingrong Zeng
Superhydrophobic materials integrating stretchability with conductivity have huge potential in the emerging application horizons such as wearable electronic sensors, flexible power storage apparatus and corrosion-resistant circuits. Herein, a facile spraying method is reported to fabricate a durable superhydrophobic coating with excellent stretchable and electrical performance by combing 1-octadecanethiol modified silver nanoparticles (M-AgNPs) with polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) on a pre-stretched natural rubber (NR) substrate...
March 6, 2018: ACS Applied Materials & Interfaces
Shanshan Wei, Gang Qu, Guanyi Luo, Yuxing Huang, Huisheng Zhang, Xuechang Zhou, Liqiu Wang, Zhou Liu, Tiantian Kong
Creating complex three-dimensional structures from soft yet durable materials enables advances in fields, such as flexible electronics, regenerating tissue engineering and soft robotics. The tough-hydrogels that mimic the human skin can bear enormous mechanical loads. By employing a spider-inspired biomimetic microfluidic-nozzle, we successfully achieve the continuous-printing of tough-hydrogels into fibers, 2D networks and even 3D structures without compromising its extreme mechanical properties. The resultant thin fibers demonstrate a stretch up to 21 at a water content of 52%, and are intrinsically transparent, biocompatible, and conductive at high stretches...
March 5, 2018: ACS Applied Materials & Interfaces
Minxuan Xu, Junjie Qi, Feng Li, Yue Zhang
Strain sensors with high sensitivity, broad sensing ranges and excellent durable stability are highly desirable due to their promising potential in electronic skins and human-friendly wearable interactive systems. Herein, we report a high-performance strain sensor based on rGO (reduced graphene oxide)/DI (deionized water) sensing elements. The strain sensors were fabricated by using Ecoflex rubber filled with rGO/DI conductive liquids via template methods, making the process simple, low-cost and scalable. The as-assembled strain sensors can be used to reflect both stretching and compressing with high sensitivity (a maximum gauge factor of 31...
March 2, 2018: Nanoscale
Ting Liu, Mengmeng Liu, Su Dou, Jiangman Sun, Zifeng Cong, Chunyan Jiang, Chunhua Du, Xiong Pu, Weiguo Hu, Zhong Lin Wang
A major challenge accompanying with the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel-elastomer hybrid as energy skins for harvesting biomechanical energies. The tough interfacial bonding between the hydrophilic hydrogel and hydrophobic elastomer, achieved by the interface modification, ensures the stable mechanical and electrical performances of the TENGs...
March 1, 2018: ACS Nano
Klas Tybrandt, Dion Khodagholy, Bernd Dielacher, Flurin Stauffer, Aline F Renz, György Buzsáki, János Vörös
Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing...
February 28, 2018: Advanced Materials
Ying Guo, Kaiqiang Zheng, Pengbo Wan
The development of integrated high-performance supercapacitors with all-in-one configuration, excellent flexibility and autonomously intrinsic self-healability, and without the extra healable film layers, is still tremendously challenging. Compared to the sandwich-like laminated structures of supercapacitors with augmented interfacial contact resistance, the flexible healable integrated supercapacitor with all-in-one structure could theoretically improve their interfacial contact resistance and energy densities, simplify the tedious device assembly process, prolong the lifetime, and avoid the displacement and delamination of multilayered configurations under deformations...
February 27, 2018: Small
Raphael F Tiefenauer, Klas Tybrandt, Morteza Aramesh, János Vörös
Metal nanostructures are widely used in plasmonic and electronic applications due to their inherent properties. Often, the fabrication of such nanostructures is limited to small areas, as the processing is costly, low-throughput, and comprises harsh fabrication conditions. Here, we introduce a template-stripping based nanotransfer printing method to overcome these limitations. This versatile technique enables the transfer of arbitrary thin film metal structures onto a variety of substrates, including glass, Kapton, silicon, and PDMS...
February 26, 2018: ACS Nano
Doh-Gyu Hwang, Michael D Bartlett
Inspired by the art of paper cutting, kirigami provides intriguing tools to create materials with unconventional mechanical and morphological responses. This behavior is appealing in multiple applications such as stretchable electronics and soft robotics and presents a tractable platform to study structure-property relationships in material systems. However, mechanical response is typically controlled through a single or fractal cut type patterned across an entire kirigami sheet, limiting deformation modes and tunability...
February 21, 2018: Scientific Reports
Sihong Wang, Jie Xu, Weichen Wang, Ging-Ji Nathan Wang, Reza Rastak, Francisco Molina-Lopez, Jong Won Chung, Simiao Niu, Vivian R Feig, Jeffery Lopez, Ting Lei, Soon-Ki Kwon, Yeongin Kim, Amir M Foudeh, Anatol Ehrlich, Andrea Gasperini, Youngjun Yun, Boris Murmann, Jeffery B-H Tok, Zhenan Bao
Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin...
February 19, 2018: Nature
Jianan Deng, Xiao Kuang, Ruiyuan Liu, Wenbo Ding, Aurelia C Wang, Ying-Chih Lai, Kai Dong, Zhen Wen, Yaxian Wang, Lili Wang, H Jerry Qi, Tong Zhang, Zhong Lin Wang
Functional polymers possess outstanding uniqueness in fabricating intelligent devices such as sensors and actuators, but they are rarely used for converting mechanical energy into electric power. Here, a vitrimer based triboelectric nanogenerator (VTENG) is developed by embedding a layer of silver nanowire percolation network in a dynamic disulfide bond-based vitrimer elastomer. In virtue of covalent dynamic disulfide bonds in the elastomer matrix, a thermal stimulus enables in situ healing if broken, on demand reconfiguration of shape, and assembly of more sophisticated structures of VTENG devices...
February 19, 2018: Advanced Materials
Kai Li, Hong Wei, Wenguang Liu, Hong Meng, Peixin Zhang, Chaoyi Yan
Developments of innovative strategies for the fabrication of stretchable sensors are of crucial importance for their applications in wearable electronic systems. In this work, we report the successful fabrication of stretchable capacitive sensors using a novel 3D printing method for highly sensitive tactile and electrochemical sensing applications. Unlike conventional lithographic or templated methods, the programmable 3D printing technique can fabricate complex device structures in a cost-effective and facile manner...
February 15, 2018: Nanotechnology
Thomas David, Jean-Noël Aqua, Kailang Liu, Luc Favre, Antoine Ronda, Marco Abbarchi, Jean-Benoit Claude, Isabelle Berbezier
Strain engineering is seen as a cost-effective way to improve the properties of electronic devices. However, this technique is limited by the development of the Asarro Tiller Grinfeld growth instability and nucleation of dislocations. Two strain engineering processes have been developed, fabrication of stretchable nanomembranes by deposition of SiGe on a sacrificial compliant substrate and use of lateral stressors to strain SiGe on Silicon On Insulator. Here, we investigate the influence of substrate softness and pre-strain on growth instability and nucleation of dislocations...
February 13, 2018: Scientific Reports
Lihua Jin, Alex Chortos, Feifei Lian, Eric Pop, Christian Linder, Zhenan Bao, Wei Cai
A basic need in stretchable electronics for wearable and biomedical technologies is conductors that maintain adequate conductivity under large deformation. This challenge can be met by a network of one-dimensional (1D) conductors, such as carbon nanotubes (CNTs) or silver nanowires, as a thin film on top of a stretchable substrate. The electrical resistance of CNT thin films exhibits a hysteretic dependence on strain under cyclic loading, although the microstructural origin of this strain dependence remains unclear...
February 12, 2018: Proceedings of the National Academy of Sciences of the United States of America
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"