keyword
MENU ▼
Read by QxMD icon Read
search

heart regeneration

keyword
https://www.readbyqxmd.com/read/28646026/exosomes-promising-sacks-for-treating-ischemic-heart-disease
#1
Gui-Hao Chen, Jun Xu, Yue-Jin Yang
Ischemic heart disease(IHD) is the leading cause of death worldwide. Despite development of continuously improving therapeutic strategies, morbidity and mortality of patients with IHD remains relatively high. Exosomes are a subpopulation of vesicles that are universally recognized as major mediators in intercellular communication. Numerous preclinical studies showed that these tiny vesicles were protective in IHD, through such actions as alleviating myocardial ischemia/reperfusion injury, promoting angiogenesis, inhibiting fibrosis and facilitating cardiac regeneration...
June 23, 2017: American Journal of Physiology. Heart and Circulatory Physiology
https://www.readbyqxmd.com/read/28639375/challenges-in-regenerating-the-diabetic-heart-a-comprehensive-review
#2
REVIEW
Venkata R Satthenapalli, Regis R Lamberts, Rajesh Katare
Stem cell therapy is one of the promising regenerative strategies developed to improve cardiac function in patients with ischemic heart diseases (IHD). However, this approach is limited in IHD patients with diabetes due to a progressive decline in the regenerative capacity of stem cells. This decline is mainly attributed to the metabolic memory incurred by diabetes on stem cell niche and their systemic cues. Understanding the molecular pathways involved in the diabetes-induced deterioration of stem cell function will be critical for developing new cardiac regeneration therapies...
June 22, 2017: Stem Cells
https://www.readbyqxmd.com/read/28638482/implantable-and-biodegradable-macroporous-iron-oxide-frameworks-for-efficient-regeneration-and-repair-of-infracted-heart
#3
Wenshuo Wang, Hongyue Tao, Yun Zhao, Xiaotian Sun, Jing Tang, Cordelia Selomulya, Jia Tang, Tianchan Chen, Yang Wang, Minglei Shu, Lei Wei, Guanyu Yi, Jixue Zhou, Lai Wei, Chunsheng Wang, Biao Kong
The construction, characterization and surgical application of a multilayered iron oxide-based macroporous composite framework were reported in this study. The framework consisted of a highly porous iron oxide core, a gelatin-based hydrogel intermediary layer and a matrigel outer cover, which conferred a multitude of desirable properties including excellent biocompatibility, improved mechanical strength and controlled biodegradability. The large pore sizes and high extent of pore interconnectivity of the framework stimulated robust neovascularization and resulted in substantially better cell viability and proliferation as a result of improved transport efficiency for oxygen and nutrients...
2017: Theranostics
https://www.readbyqxmd.com/read/28638481/neonatal-heart-enriched-mir-708-promotes-proliferation-and-stress-resistance-of-cardiomyocytes-in-rodents
#4
Shengqiong Deng, Qian Zhao, Lixiao Zhen, Chuyi Zhang, Cuicui Liu, Guangxue Wang, Lin Zhang, Luer Bao, Ying Lu, Lingyu Meng, Jinhui Lü, Ping Yu, Xin Lin, Yuzhen Zhang, Yi-Han Chen, Huimin Fan, William C Cho, Zhongmin Liu, Zuoren Yu
Adult heart has limited potential for regeneration after pathological injury due to the limited cell proliferation of cardiomyocytes and the quiescent status of progenitor cells. As such, induction of cell-cycle reentry of cardiomyocytes is one of the key strategies for regeneration of damaged heart. In this study, a subset of miRNAs including miR-708 were identified to be much more abundant in the embryonic and neonatal cardiomyocytes than that in adult rodents. Overexpression of miR-708 promoted cellular proliferation of H9C2 cells or primary cardiomyocytes from neonatal rats or mice in vitro...
2017: Theranostics
https://www.readbyqxmd.com/read/28636371/iron-oxidation-and-core-formation-in-recombinant-heteropolymeric-human-ferritins
#5
Matthew R Mehlenbacher, Maura Poli, Paolo Arosio, Paolo Santambrogio, Sonia Levi, N Dennis Chasteen, Fadi Bou-Abdallah
In animals, the iron storage and detoxification protein, ferritin, is composed of two functionally and genetically distinct subunit types, H (Heavy) and L (Light), which co-assemble in various ratios with tissue specific distributions to form shell-like protein structures of 24 subunits within which a mineralized iron core is stored. The H-subunit possesses a ferroxidase center (FC) which catalyzes Fe(II) oxidation whereas the L-subunit does not. To assess the role of the L-subunit in iron oxidation and core formation, two human recombinant heteropolymeric ferritins, designated H-rich and L-rich with ratios of ~ 20H:4L and ~ 22L:2H, respectively, were employed and compared to the human homopolymeric H-subunit ferritin (HuHF)...
June 21, 2017: Biochemistry
https://www.readbyqxmd.com/read/28633567/endogenous-bioelectric-signaling-networks-exploiting-voltage-gradients-for-control-of-growth-and-form
#6
Michael Levin, Giovanni Pezzulo, Joshua M Finkelstein
Living systems exhibit remarkable abilities to self-assemble, regenerate, and remodel complex shapes. How cellular networks construct and repair specific anatomical outcomes is an open question at the heart of the next-generation science of bioengineering. Developmental bioelectricity is an exciting emerging discipline that exploits endogenous bioelectric signaling among many cell types to regulate pattern formation. We provide a brief overview of this field, review recent data in which bioelectricity is used to control patterning in a range of model systems, and describe the molecular tools being used to probe the role of bioelectrics in the dynamic control of complex anatomy...
June 21, 2017: Annual Review of Biomedical Engineering
https://www.readbyqxmd.com/read/28633074/programming-cells-for-cardiac-repair
#7
REVIEW
Rocco Romagnuolo, Michael A Laflamme
Because the heart is a poorly regenerative organ, there has been considerable interest in developing novel cell-based approaches to restore lost contractile function after myocardial infarction (MI). While a wide variety of candidate cell types have been tested in animal MI models, the vast majority of clinical trials have used adult stem cell types, usually derived from bone marrow. These studies have generally yielded disappointing results, an outcome that may reflect in part the limited cardiogenic potential of the adult stem cell sources employed...
June 17, 2017: Current Opinion in Biotechnology
https://www.readbyqxmd.com/read/28632131/reciprocal-analyses-in-zebrafish-and-medaka-reveal-that-harnessing-the-immune-response-promotes-cardiac-regeneration
#8
Didier Yr Stainier, Shih-Lei Ben Lai, Rubén Marín-Juez, Pedro Luís Moura, Carsten Kuenne, Jason Kuan Han Lai, Ayele Taddese Tsedeke, Stefan Guenther, Mario Looso
Zebrafish display a distinct ability to regenerate their heart following injury. However, this ability is not shared by another teleost, the medaka. In order to identify cellular and molecular bases for this difference, we performed comparative transcriptomic analyses following cardiac cryoinjury. This comparison points to major differences in immune cell dynamics between these models. Upon closer examination, we observed delayed and reduced macrophage recruitment in medaka, along with delayed neutrophil clearance...
June 20, 2017: ELife
https://www.readbyqxmd.com/read/28629929/interactions-between-micrornas-and-long-non-coding-rnas-in-cardiac-development-and-repair
#9
REVIEW
Alessio Rotini, Ester Martínez-Sarrà, Enrico Pozzo, Maurilio Sampaolesi
Non-coding RNAs (ncRNAs) are emerging players in muscle regulation. Based on their length and differences in molecular structure, ncRNAs are subdivided into several categories including small interfering RNAs, stable non-coding RNAs, microRNAs (miRs), long non-coding RNAs (lncRNAs), and circular RNAs. miRs and lncRNAs are able to post-transcriptionally regulate many genes and bring into play several traits simultaneously due to a myriad of different targets. Recent studies have emphasized their importance in cardiac regeneration and repair...
June 16, 2017: Pharmacological Research: the Official Journal of the Italian Pharmacological Society
https://www.readbyqxmd.com/read/28629516/context-dependent-skeletal-effects-of-erythropoietin
#10
Sahar Hiram-Bab, Drorit Neumann, Yankel Gabet
Erythropoietin (Epo) is the main hormone that regulates the production of red blood cells (hematopoiesis), by stimulating their progenitors. Beyond this vital function, several emerging roles have been noted for Epo in other tissues, including neurons, heart, and retina. The skeletal system is also affected by Epo; however, its actions on bone are, as yet, controversial. Here, we review the seemingly contradicting evidence regarding Epo effects on bone remodeling. We also discuss the evidence pointing to a direct vs indirect effect of Epo on the osteoblastic and osteoclastic cell lineages...
2017: Vitamins and Hormones
https://www.readbyqxmd.com/read/28621328/live-cell-screening-platform-identifies-ppar%C3%AE-as-a-regulator-of-cardiomyocyte-proliferation-and-cardiac-repair
#11
Ajit Magadum, Yishu Ding, Lan He, Teayoun Kim, Mohankrishna Dalvoy Vasudevarao, Qinqiang Long, Kevin Yang, Nadeera Wickramasinghe, Harsha V Renikunta, Nicole Dubois, Gilbert Weidinger, Qinglin Yang, Felix B Engel
Zebrafish can efficiently regenerate their heart through cardiomyocyte proliferation. In contrast, mammalian cardiomyocytes stop proliferating shortly after birth, limiting the regenerative capacity of the postnatal mammalian heart. Therefore, if the endogenous potential of postnatal cardiomyocyte proliferation could be enhanced, it could offer a promising future therapy for heart failure patients. Here, we set out to systematically identify small molecules triggering postnatal cardiomyocyte proliferation. By screening chemical compound libraries utilizing a Fucci-based system for assessing cell cycle stages, we identified carbacyclin as an inducer of postnatal cardiomyocyte proliferation...
June 16, 2017: Cell Research
https://www.readbyqxmd.com/read/28620747/amniotic-fluid-cells-current-progress-and-emerging-challenges-in-renal-regeneration
#12
REVIEW
Stefano Da Sacco, Laura Perin, Sargis Sedrakyan
Amniotic fluid (AF) contains a heterogeneous population of cells that have been identified to possess pluripotent and progenitor-like characteristics. These cells have been applied in various regenerative medicine applications ranging from in vitro cell differentiation to tissue engineering to cellular therapies for different organs including the heart, the liver, the lung, and the kidneys. In this review, we examine the different methodologies used for the derivation of amniotic fluid stem cells and renal progenitors, and their application in renal repair and regeneration...
June 15, 2017: Pediatric Nephrology: Journal of the International Pediatric Nephrology Association
https://www.readbyqxmd.com/read/28616151/therapeutic-potential-of-dental-stem-cells
#13
REVIEW
Elna Paul Chalisserry, Seung Yun Nam, Sang Hyug Park, Sukumaran Anil
Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities...
January 2017: Journal of Tissue Engineering
https://www.readbyqxmd.com/read/28605260/cellular-therapies-for-treatment-of-radiation-injury-report-from-a-nih-niaid-and-irsn-workshop
#14
Andrea L DiCarlo, Radia Tamarat, Carmen I Rios, Marc Benderitter, Christine W Czarniecki, Theresa C Allio, Francesca Macchiarini, Bert W Maidment, Jean-Rene Jourdain
In recent years, there has been increasing concern over the possibility of a radiological or nuclear incident occurring somewhere in the world. Intelligence agencies frequently report that terrorist groups and rogue nations are seeking to obtain radiological or nuclear weapons of mass destruction. In addition, there exists the real possibility that safety of nuclear power reactors could be compromised by natural (such as the tsunami and subsequent Fukushima accident in Japan in March, 2011) or accidental (Three Mile Island, 1979 and Chernobyl, 1986) events...
June 12, 2017: Radiation Research
https://www.readbyqxmd.com/read/28603177/recent-progress-using-pluripotent-stem-cells-for-cardiac-regenerative-therapy
#15
Hajime Ichimura, Yuji Shiba
Pluripotent stem cells (PSCs) have gained interest for cell-based regenerative therapies because of their capacity to differentiate into most somatic cell types, including cardiomyocytes. Remarkable progress in the generation of PSC-derived cardiomyocytes has been made in this decade, and recent preclinical transplantation studies using various animal models have provided proof-of-principle for their use in heart regeneration. However, several obstacles preclude their effective and safe clinical application for cardiac repair, including the need for approaches that prevent tumorigenesis, arrhythmogenesis, and immune rejection...
June 10, 2017: Circulation Journal: Official Journal of the Japanese Circulation Society
https://www.readbyqxmd.com/read/28600129/angiogenic-peptide-nanofibers-repair-cardiac-tissue-defect-after-myocardial-infarction
#16
Abdul Jalil Rufaihah, I Ceren Yasa, Vaibavi Srirangam Ramanujam, Suganya Cheyyatraivendran Arularasu, Theo Kofidis, Mustafa O Guler, Ayse B Tekinay
Myocardial infarction remains one of the top leading causes of death in the world and the damage sustained in the heart eventually develops into heart failure. Limited conventional treatment options due to the inability of the myocardium to regenerate after injury and shortage of organ donors require the development of alternative therapies to repair the damaged myocardium. Current efforts in repairing damage after myocardial infarction concentrates on using biologically derived molecules such as growth factors or stem cells, which carry risks of serious side effects including the formation of teratomas...
June 6, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28597071/the-novel-tool-of-cell-reprogramming-for-applications-in-molecular-medicine
#17
REVIEW
Moritz Mall, Marius Wernig
Recent discoveries in the field of stem cell biology have enabled scientists to "reprogram" cells from one type to another. For example, it is now possible to place adult skin or blood cells in a dish and convert them into neurons, liver, or heart cells. It is also possible to literally "rejuvenate" adult cells by reprogramming them into embryonic-like stem cells, which in turn can be differentiated into every tissue and cell type of the human body. Our ability to reprogram cell types has four main implications for medicine: (1) scientists can now take skin or blood cells from patients and convert them to other cells to study disease processes...
June 8, 2017: Journal of Molecular Medicine: Official Organ of the "Gesellschaft Deutscher Naturforscher und Ärzte"
https://www.readbyqxmd.com/read/28596337/cardiac-regeneration-strategies-staying-young-at-heart
#18
REVIEW
Eldad Tzahor, Kenneth D Poss
The human heart is continually operating as a muscular pump, contracting, on average, 80 times per minute to propel 8000 liters of blood through body tissues each day. Whereas damaged skeletal muscle has a profound capacity to regenerate, heart muscle, at least in mammals, has poor regenerative potential. This deficiency is attributable to the lack of resident cardiac stem cells, combined with roadblocks that limit adult cardiomyocytes from entering the cell cycle and completing division. Insights for regeneration have recently emerged from studies of animals with an elevated innate capacity for regeneration, the innovation of stem cell and reprogramming technologies, and a clearer understanding of the cardiomyocyte genetic program and key extrinsic signals...
June 9, 2017: Science
https://www.readbyqxmd.com/read/28592901/high-resolution-magnetic-resonance-imaging-of-the-regenerating-adult-zebrafish-heart
#19
Jana Koth, Mahon L Maguire, Darryl McClymont, Leonie Diffley, Victoria L Thornton, John Beech, Roger K Patient, Paul R Riley, Jürgen E Schneider
The adult zebrafish is a well-established model for studying heart regeneration, but due to its tissue opaqueness, repair has been primarily assessed using destructive histology, precluding repeated investigations of the same animal. We present a high-resolution, non-invasive in vivo magnetic resonance imaging (MRI) method incorporating a miniature respiratory and anaesthetic perfusion set-up for live adult zebrafish, allowing for visualization of scar formation and heart regeneration in the same animal over time at an isotropic 31 µm voxel resolution...
June 7, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28591641/cardiac-stem-cells-for-myocardial-regeneration-promising-but-not-ready-for-prime-time
#20
REVIEW
Joshua Lader, Maxine Stachel, Lei Bu
Remarkable strides have been made in the treatment of ischemic heart disease in decades. As the initial loss of cardiomyocytes associated with myocardial infarction serves as an impetus for myocardial remodeling, the ability to replace these cells with healthy counterparts would represent an effective treatment for many forms of cardiovascular disease. The discovery of cardiac stem cells (that can differentiate into multiple lineages) highlighted the possibility for development of cell-based therapeutics to achieve this ultimate goal...
June 4, 2017: Current Opinion in Biotechnology
keyword
keyword
100270
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"