Read by QxMD icon Read

Solar photovoltaic

Mojtaba Abdi-Jalebi, Zahra Andaji-Garmaroudi, Stefania Cacovich, Camille Stavrakas, Bertrand Philippe, Johannes M Richter, Mejd Alsari, Edward P Booker, Eline M Hutter, Andrew J Pearson, Samuele Lilliu, Tom J Savenije, Håkan Rensmo, Giorgio Divitini, Caterina Ducati, Richard H Friend, Samuel D Stranks
Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions...
March 21, 2018: Nature
Johannes Schlipf, Abdelrahman M Askar, Florian Pantle, Benjamin D Wiltshire, Anton Sura, Peter Schneider, Linus Huber, Karthik Shankar, Peter Müller-Buschbaum
Solar cells employing hybrid perovskites have proven to be a serious contender versus established thin-film photovoltaic technologies. Typically, current photovoltaic devices are built up layer by layer from a transparent substrate (bottom-up approach), while the deposition of the perovskite layer itself comes with many challenges including the control of crystal size, nucleation density and growth rate. On the other hand, single crystals have been used with great success for studying the fundamental properties of this new class of optoelectronic materials...
March 20, 2018: Scientific Reports
Guangye Zhang, Jingbo Zhao, Philip C Y Chow, Kui Jiang, Jianquan Zhang, Zonglong Zhu, Jie Zhang, Fei Huang, He Yan
The bulk-heterojunction blend of an electron donor and an electron acceptor material is the key component in a solution-processed organic photovoltaic device. In the past decades, a p-type conjugated polymer and an n-type fullerene derivative have been the most commonly used electron donor and electron acceptor, respectively. While most advances of the device performance come from the design of new polymer donors, fullerene derivatives have almost been exclusively used as electron acceptors in organic photovoltaics...
March 20, 2018: Chemical Reviews
Yue-Ying Li, Jian-Gan Wang, Huanhuan Sun, Bingqing Wei
Organic dyes used in the conventional dye-sensitized solar cells (DSSCs) suffer from poor light stability and high cost. In this work, we demonstrate a new inorganic sensitized solar cell based on ordered one-dimensional (1D) semiconductor nanorod arrays of TiO2/NiTiO3 heterostructures prepared via a facile two-step hydrothermal approach. The semiconductor heterostructure arrays are highly desirable and promising for DSSCs due to their direct charge transport capability and slow charge recombination rate. The low-cost NiTiO3 inorganic semiconductor possesses an appropriate band gap that matches well with TiO2, which behaviors like a "dye" to enable efficient light-harvesting and fast electron-hole separation...
March 20, 2018: ACS Applied Materials & Interfaces
Yohan Ko, Yechan Kim, Chanyong Lee, Youbin Kim, Yongseok Jun
Organometallic halide perovskite solar cells (PSCs) have unique photovoltaic properties for use in next-generation solar-energy harvesting systems. The highest efficiency PSCs reached 22.1% at a lab scale of <0.1 cm2 device area. Thus, scaling up is the next step toward commercialization, but the difficulty in controlling the quality of large-area perovskite thin films remains a fundamental challenge. It has also been frequently reported that the J-V hysteresis is intensified in PSCs with areas larger than 1 cm2 ...
March 20, 2018: ACS Applied Materials & Interfaces
Alexandra Levtchenko, Sylvain LE Gall, Raphael Lachaume, Jerome Michallon, Stephane Collin, Jose Alvarez, Zakaria Djebbour, Jean Paul Kleider
By coupling optical and electrical modeling, we have investigated the photovoltaic performances of p-i-n radial nanowires array based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell. By varying either the doping concentration of the c-Si core, or back contact work function we can separate and highlight the contribution to the cell's performance of the nanowires themselves (the radial cell) from the interspace between the nanowires (the planar cell). We show that the build-in potential (Vbi) in the radial and planar cells strongly depends on the doping of c-Si core and the work function of the back contact respectively...
March 19, 2018: Nanotechnology
Jesus Idigoras, Francisco Javier Aparicio, Lidia Contreras-Bernal, Susana Ramos-Terrón, María Alcaire, Juan R Sanchez-Valencia, Ana Borras, Angel Barranco, Juan Antonio Anta
A compromise between high power conversion efficiency and long-term stability of hybrid organic-inorganic metal halide perovskite solar cells is necessary for their outdoor photovoltaic application and commercialization. Herein, a method to improve the stability of perovskite solar cells under water and moisture exposure consisting in the encapsulation of the cell with an ultrathin plasma polymer is reported. The deposition of the polymer is carried out at room temperature by the remote plasma vacuum deposition of adamantane powder...
March 19, 2018: ACS Applied Materials & Interfaces
Hossein Sojoudi, Hadi Arabnejad, Asif Raiyan, Siamack A Shirazi, Gareth H McKinley, Karen K Gleason
Ice formation and accumulation on surfaces can result in severe problems for solar photovoltaic installations, offshore oil platforms, wind turbines and aircrafts. In addition, blockage of pipelines by formation and accumulation of clathrate hydrates of natural gases has safety and economical concerns in oil and gas operations, particularly at high pressures and low temperatures such as those found in subsea or arctic environments. Practical adoption of icephobic/hydrate-phobic surfaces requires mechanical robustness and stability under harsh environments...
March 16, 2018: Soft Matter
Daniel Amgar, Tal Binyamin, Vladimir Uvarov, Lioz Etgar
One of the most attractive features of perovskite materials is their chemical flexibility. Due to innovative chemical compositions of perovskites, their optical and structural properties, and functionalities have become more advanced, enabling better solar performance in photovoltaics, as well as robustness and excellent properties in the nanoscale for optoelectronics. The quest for novel perovskite compositions in the nano-scale is significantly important. This paper reports on a mixed-cation system of RbxCs1-xPbX3 (where X = Cl or Br) nanoparticles...
March 16, 2018: Nanoscale
Juan Zhao, Zhihe Chi, Zhan Yang, Xiaojie Chen, Michael S Arnold, Yi Zhang, Jiarui Xu, Zhenguo Chi, Matthew P Aldred
Truly stretchable electronics, wherein all components themselves permit elastic deformation as the whole devices are stretched, exhibit unique advantages over other strategies, such as simple fabrication process, high integrity of entire components and intimate integration with curvilinear surfaces. In contrast to the stretchable devices using stretchable interconnectors to integrate with rigid active devices, truly stretchable devices are realized with or without intentionally employing structural engineering (e...
March 15, 2018: Nanoscale
Bo Li, Yanan Zhang, Lin Fu, Tong Yu, Shujie Zhou, Luyuan Zhang, Longwei Yin
Owing to inevitable thermal/moisture instability for organic-inorganic hybrid perovskites, pure inorganic perovskite cesium lead halides with both inherent stability and prominent photovoltaic performance have become research hotspots as a promising candidate for commercial perovskite solar cells. However, it is still a serious challenge to synthesize desired cubic cesium lead iodides (CsPbI3 ) with superior photovoltaic performance for its thermodynamically metastable characteristics. Herein, polymer poly-vinylpyrrolidone (PVP)-induced surface passivation engineering is reported to synthesize extra-long-term stable cubic CsPbI3 ...
March 14, 2018: Nature Communications
Luis M Pazos Outón, T Patrick Xiao, Eli Yablonovitch
Lead halide materials have seen a recent surge of interest from the photovoltaics community following the observation of surprisingly high photovoltaic performance, with opto-electronic properties similar to GaAs. This begs the question; what is the limit for the efficiency of these materials? It has been known that at 1-sun the efficiency limit of crystalline silicon is ~29%, despite the Shockley-Queisser (SQ) limit for its bandgap being ~33%, the discrepancy being due to strong Auger recombination. In this article, we show that Methyl Ammonium Lead Iodide (MAPbI3) likewise has a larger than expected Auger coefficient...
March 14, 2018: Journal of Physical Chemistry Letters
Lijian Zuo, Xueliang Shi, Sae Byeok Jo, Yun Liu, Fracis Lin, Alex K-Y Jen
Limited by the various inherent energy losses from multiple channels, organic solar cells show inferior device performance compared to traditional inorganic photovoltaic techniques, such as silicon and CuInGaSe. To alleviate these fundamental limitations, an integrated multiple strategy is implemented including molecular design, interfacial engineering, optical manipulation, and tandem device construction into one cell. Considering the close correlation among these loss channels, a sophisticated quantification of energy-loss reduction is tracked along with each strategy in a perspective to reach rational overall optimum...
March 13, 2018: Advanced Materials
Jiangman Sun, Ping Cai, Feilong Pan, Lianjie Zhang, Zhulin Liu, Zhitian Liu, Yong Cao, Junwu Chen
A 5,6-difluorobenzothiazole (ffBTz) based dibromo monomer was successfully synthesized, from which new fluorinated conjugated polymers PF-ffBTz and PFN-ffBTz were prepared via copolymerizations with two fluorene based diboronic ester monomers. Twisted fluorene-ffBTz backbones enable PF-ffBTz and PFN-ffBTz with large band gaps up to 3.10 eV and deep-lying HOMO levels down to 6.2 eV. The chemical structures of PF-ffBTz and PFN-ffBTz impart some new functionalities of fluorinated conjugated polymers. PF-ffBTz can show deep blue electroluminescent (EL) emission, with high external quantum efficiency (EQE) of 3...
March 13, 2018: ACS Applied Materials & Interfaces
Wanning Li, Long Ye, Sunsun Li, Huifeng Yao, Harald Ade, Jianhui Hou
Besides broadening of the absorption spectrum, modulating molecular energy levels, and other well-studied properties, a stronger intramolecular electron push-pull effect also affords other advantages in nonfullerene acceptors. A strong push-pull effect improves the dipole moment of the wings in IT-4F over IT-M and results in a lower miscibility than IT-M when blended with PBDB-TF. This feature leads to higher domain purity in the PBDB-TF:IT-4F blend and makes a contribution to the better photovoltaic performance...
March 13, 2018: Advanced Materials
Yao Liu, Zachariah A Page, Dongming Zhou, Volodimyr V Duzhko, Kevin R Kittilstved, Todd Emrick, Thomas P Russell
While perovskite solar cells have invigorated the photovoltaic research community due to their excellent power conversion efficiencies (PCEs), these devices notably suffer from poor stability. To address this crucial issue, a solution-processable organic chemical inhibition layer (OCIL) was integrated into perovskite solar cells, resulting in improved device stability and a maximum PCE of 16.3%. Photoenhanced self-doping of the fulleropyrrolidine mixture in the interlayers afforded devices that were advantageously insensitive to OCIL thickness, ranging from 4 to 190 nm...
February 28, 2018: ACS Central Science
Mohammad Mahdi Tavakoli, Fabrizio Giordano, Shaik M Zakeeruddin, Michael Grätzel
The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has recently reached 22.7 % exceeding that of competing thin film photovoltaics and the market leader polycrystalline silicon. Further augmentation of the PCE towards the Shockley-Queisser limit of 33.5 % warrants suppression of radiationless carrier recombination by judicious engineering of the interface between the light harvesting perovskite and the charge carrier extraction layers. Here, we introduce a mesoscopic oxide double layer as electron selective contact consisting of a scaffold of TiO2 nanoparticles covered by a thin film of SnO2, either in amorphous (a-SnO2), crystalline (c-SnO2) or nanocrystalline (quantum dot) form (SnO2-NC)...
March 12, 2018: Nano Letters
Hideaki Komiyama, Takahiro To, Seiichi Furukawa, Yu Hidaka, Woong Shin, Takahiro Ichikawa, Ryota Arai, Takuma Yasuda
Solution-processed organic solar cells (OSCs) based on narrow-bandgap small molecules hold great promise as next-generation energy-converting devices. In this paper, we focus on a family of A-π-D-π-A-type small molecules, namely, BDT-nT-ID (n = 1-4) oligomers, consisting of benzo[1,2-b:4,5-b']dithiophene (BDT) as the central electron-donating (D) core, 1,3-indandione (ID) as the terminal electron-accepting (A) units, and two regioregular oligo(3-hexylthiophene)s (nT) with different numbers of thiophene rings as the π-bridging units, and elucidate their structure-property-function relationships...
March 12, 2018: ACS Applied Materials & Interfaces
Jiankai Zhang, Hui Luo, Weijia Xie, Xuanhuai Lin, Xian Hou, Jianping Zhou, Sumei Huang, Wei Ou-Yang, Zhuo Sun, Xiaohong Chen
Planar perovskite solar cells (PSCs) that use nickel oxide (NiOx ) as a hole transport layer have recently attracted tremendous attention because of their excellent photovoltaic efficiencies and simple fabrication. However, the electrical conductivity of NiOx and the interface contact properties of the NiOx /perovskite layer are always limited for the NiOx layer fabricated at a relatively low annealing temperature. Ferrocenedicarboxylic acid (FDA) was firstly introduced to modify a p-type NiOx hole transport layer in PSCs, which obviously improves the crystallization of the perovskite layer and hole transport and collection abilities and reduces carrier recombination...
March 12, 2018: Nanoscale
Furqan Almyahi, Thomas R Andersen, Nathan A Cooling, Natalie P Holmes, Matthew J Griffith, Krishna Feron, Xiaojing Zhou, Warwick J Belcher, Paul C Dastoor
In this study we have optimised the preparation conditions for large-volume nanoparticle inks, based on poly(3-hexylthiophene) (P3HT):indene-C60 multiadducts (ICxA), through two purification processes: centrifugal and crossflow ultrafiltration. The impact of purification is twofold: firstly, removal of excess sodium dodecyl sulfate (SDS) surfactant from the ink and, secondly, concentration of the photoactive components in the ink. The removal of SDS was studied in detail both by a UV-vis spectroscopy-based method and by surface tension measurements of the nanoparticle ink filtrate; revealing that centrifugal ultrafiltration removed SDS at a higher rate than crossflow ultrafiltration even though a similar filter was applied in both cases (10,000 Da M w cut-off)...
2018: Beilstein Journal of Nanotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"