Read by QxMD icon Read


Edward Hanson, Douglas Olson, Haijun Liu, Zeeshan Ahmed, Kevin O Douglass
We describe our progress in developing the infrastructure for traceable transient measurements of pressure. Towards that end, we have built and characterized a dual diaphragm shock tube that allows us to achieve shock amplitude reproducibility of approximately 2.3 % for shocks with Mach speeds ranging from 1.26 to 1.5. In this proof-of-concept study we use our shock tube to characterize the dynamic response of photonic sensors embedded in polydimethylsiloxane (PDMS), a material of choice for soft tissue phantoms...
April 2018: Metrologia
Julia Scherschligt, James A Fedchak, Daniel S Barker, Stephen Eckel, Nikolai Klimov, Constantinos Makrides, Eite Tiesinga
The National Institute of Standards and Technology has recently begun a program to develop a primary pressure standard that is based on ultra-cold atoms, covering a pressure range of 1 × 10-6 Pa to 1 × 10-10 Pa and possibly lower. These pressures correspond to the entire ultra-high vacuum (UHV) range and extend into the extreme-high vacuum (XHV). This cold-atom vacuum standard (CAVS) is both a primary standard and absolute sensor of vacuum. The CAVS is based on the loss of cold, sensor atoms (such as the alkali-metal lithium) from a magnetic trap due to collisions with the background gas (primarily H2 ) in the vacuum...
December 2017: Metrologia
X J Feng, J T Zhang, H Lin, K A Gillis, J B Mehl, M R Moldover, K Zhang, Y N Duan
We report a new determination of the Boltzmann constant k B using a cylindrical acoustic gas thermometer. We determined the length of the copper cavity from measurements of its microwave resonance frequencies. This contrasts with our previous work (Zhang et al 2011 Int. J. Thermophys. 32 1297, Lin et al 2013 Metrologia 50 417, Feng et al 2015 Metrologia 52 S343) that determined the length of a different cavity using two-color optical interferometry. In this new study, the half-widths of the acoustic resonances are closer to their theoretical values than in our previous work...
October 2017: Metrologia
N E Flowers-Jacobs, A Pollarolo, K J Coakley, A E Fox, H Rogalla, W L Tew, S P Benz
A value for the Boltzmann constant was measured electronically using an improved version of the Johnson Noise Thermometry (JNT) system at the National Institute of Standards and Technology (NIST), USA. This system is different from prior ones, including those from the 2011 determination at NIST and both 2015 and 2017 determinations at the National Institute of Metrology (NIM), China. As in all three previous determinations, the main contribution to the combined uncertainty is the statistical uncertainty in the noise measurement, which is mitigated by accumulating and integrating many weeks of cross-correlated measured data...
October 2017: Metrologia
Nicholas Vlajic, Ako Chijioke
In general, the dynamic sensitivity of a force transducer depends upon the mechanical system in which it is used. This dependence serves as motivation to develop a dynamic force transfer standard, which can be used to calibrate an application transducer in situ . In this work, we SI-traceably calibrate a hand-held force transducer, namely an impact hammer, by using a mass suspended from a thin line which is cut to produce a known dynamic force in the form of a step function. We show that this instrument is a promising candidate as a transfer standard, since its dynamic response has small variance between different users...
August 2017: Metrologia
Jifeng Qu, Samuel P Benz, Kevin Coakley, Horst Rogalla, Weston L Tew, Rod White, Kunli Zhou, Zhenyu Zhou
Recent measurements using acoustic gas thermometry have determined the value of the Boltzmann constant, k , with a relative uncertainty less than 1 × 10-6 . These results have been supported by a measurement with a relative uncertainty of 1.9 × 10-6 made with dielectric-constant gas thermometry. Together, the measurements meet the requirements of the International Committee for Weights and Measures and enable them to proceed with the redefinition of the kelvin in 2018. In further support, we provide a new determination of k using a purely electronic approach, Johnson noise thermometry, in which the thermal noise power generated by a sensing resistor immersed in a triple-point-of-water cell is compared to the noise power of a quantum-accurate pseudo-random noise waveform of nominally equal noise power...
August 2017: Metrologia
X J Feng, J T Zhang, M R Moldover, I Yang, M D Plimmer, H Lin
This article describes the accurate determination of the molar mass M of a sample of argon gas used for the determination of the Boltzmann constant. The method of one of the authors (Moldover et al 1988 J. Res. Natl. Bur. Stand. 93 85-144) uses the ratio of the square speed of sound in the gas under analysis and in a reference sample of known molar mass. A sample of argon that was isotopically-enriched in 40 Ar was used as the reference, whose unreactive impurities had been independently measured. The results for three gas samples are in good agreement with determinations by gravimetric mass spectrometry; (〈 M acoustic / M mass-spec 〉 - 1) = (-0...
June 2017: Metrologia
Blaza Toman, Michael A Nelson, Mary Bedner
Chemical measurement methods are designed to promote accurate knowledge of a measurand or system. As such, these methods often allow elicitation of latent sources of variability and correlation in experimental data. They typically implement measurement equations that support quantification of effects associated with calibration standards and other known or observed parametric variables. Additionally, multiple samples and calibrants are usually analyzed to assess accuracy of the measurement procedure and repeatability by the analyst...
June 2017: Metrologia
Kevin J Coakley, Jifeng Qu
In the electronic measurement of the Boltzmann constant based on Johnson noise thermometry, the ratio of the power spectral densities of thermal noise across a resistor at the triple point of water, and pseudo-random noise synthetically generated by a quantum-accurate voltage-noise source is constant to within 1 part in a billion for frequencies up to 1 GHz. Given knowledge of this ratio, and the values of other parameters that are known or measured, one can determine the Boltzmann constant. Due, in part, to mismatch between transmission lines, the experimental ratio spectrum varies with frequency...
April 2017: Metrologia
Christian Wuethrich, Kenta Arai, Mercede Bergoglio, James A Fedchak, Karl Jousten, Seung Soo Hong, Jorge Torres Guzman
The comparison CCM.P-K15 is a key comparison in pressure involving six laboratories in three regional metrological organizations (RMO). The measurand of the comparison is the accommodation coefficient of two spinning rotating gauge characterized in nitrogen from 0.1 mPa up to 1.0 Pa. The two transfer standards were circulated from November 2009 until March 2011. The circulation consisted of three loops, one for each RMO, and a new calibration by the pilot between each loop. The stability of one of the transfer standards was poor and was worse than expected based on the previous history of the transfer standard while the other transfer standard demonstrated good stability while circulated in Europe and America and a fair stability while circulated in Asia...
2017: Metrologia
Jacob Ricker, Jay Hendricks, Thomas Bock, Pražák Dominik, Tokihiko Kobata, Jorge Torres, Irina Sadkovskaya
The report summarizes the Consultative Committee for Mass (CCM) key comparison CCM.P-K4.2012 for absolute pressure spanning the range of 1 Pa to 10 000 Pa. The comparison was carried out at six National Metrology Institutes (NMIs), including National Institute of Standards and Technology (NIST), Physikalisch-Technische Bundesanstalt (PTB), Czech Metrology Institute (CMI), National Metrology Institute of Japan (NMIJ), Centro Nacional de Metrología (CENAM), and DI Mendeleyev Institute for Metrology (VNIIM). The comparison was made via a calibrated transfer standard measured at each of the NMIs facilities using their laboratory standard during the period May 2012 to September 2013...
2017: Metrologia
John Wright, Blaza Toman, Bodo Mickan, Gerd Wübbeler, Olha Bodnar, Clemens Elster
Inter-laboratory comparisons use the best available transfer standards to check the participants' uncertainty analyses, identify underestimated uncertainty claims or unknown measurement biases, and improve the global measurement system. For some measurands, instability of the transfer standard can lead to an inconclusive comparison result. If the transfer standard uncertainty is large relative to a participating laboratory's uncertainty, the commonly used standardized degree of equivalence ≤ 1 criterion does not always correctly assess whether a participant is working within their uncertainty claims...
December 2016: Metrologia
Nicholas Vlajic, Ako Chijioke
We describe an apparatus for traceable, dynamic calibration of force transducers using harmonic excitation, and report calibration measurements of force transducers using this apparatus. In this system, the force applied to the transducer is produced by the acceleration of an attached mass, and is determined according to Newton's second law, F = ma . The acceleration is measured by primary means, using laser interferometry. The capabilities of this system are demonstrated by performing dynamic calibrations of two shear-web-type force transducers up to a frequency of 2 kHz, with an expanded uncertainty below 1...
August 2016: Metrologia
K O Douglass, D A Olson
We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5 % with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes...
June 2016: Metrologia
Marcus H Mendenhall, Albert Henins, Donald Windover, James P Cline
We present details on the alignment and calibration of a goniometer assembly consisting two stacked, optically encoded, vertical axis rotation stages. A technique for its calibration is presented that utilizes a stable, uncalibrated, third stage to position a mirror in conjunction with a nulling autocollimator. Such a system provides a self-calibrating set of angular stages with absolute accuracy of ±0.1 second of plane angle (k=2 expanded uncertainty) around the full circle, suitable for laboratory application...
June 2016: Metrologia
Haoyan Wei, Joshua Pomeroy
Sub-monolayer sensitivity to controlled gas adsorption and desorption is demonstrated using a double paddle oscillator (DPO) installed within an UHV (ultra-high vacuum) environmental chamber equipped with in situ film deposition, (multi)gas admission and temperature control. This effort is intended to establish a robust framework for quantitatively comparing mass changes due to gas loading and unloading on different materials systems selected or considered for use as mass artifacts. Our apparatus is composed of a UHV chamber with gas introduction and temperature control and in-situ materials deposition for future materials testing enabling in situ preparation of virgin surfaces that can be monitored during initial exposure to gasses of interest...
April 2016: Metrologia
Behrang H Hamadani, Andrew Shore, John Roller, Howard W Yoon, Mark Campanelli
We present a light emitting diode (LED)-based system utilizing a combinatorial flux addition method to investigate the nonlinear relationship in solar cells between the output current of the cell and the incident irradiance level. The magnitude of the light flux is controlled by the supplied currents to two LEDs (or two sets of them) in a combinatorial fashion. The signals measured from the cell are arranged within a related overdetermined linear system of equations derived from an appropriately chosen N th degree polynomial representing the relationship between the measured signals and the incident fluxes...
February 2016: Metrologia
R Feistel, R Wielgosz, S A Bell, M F Camões, J R Cooper, P Dexter, A G Dickson, P Fisicaro, A H Harvey, M Heinonen, O Hellmuth, H-J Kretzschmar, J W Lovell-Smith, T J McDougall, R Pawlowicz, P Ridout, S Seitz, P Spitzer, D Stoica, H Wolf
Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth's radiation balance, atmospheric water vapour is the strongest "greenhouse" gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. On climatic time scales, melting ice caps and regional deviations of the hydrological cycle result in changes of seawater salinity, which in turn may modify the global circulation of the oceans and their ability to store heat and to buffer anthropogenically produced carbon dioxide...
February 2016: Metrologia
Blaza Toman, Michael A Nelson, Katrice A Lippa
Chemical purity assessment using quantitative1 H-nuclear magnetic resonance spectroscopy is a method based on ratio references of mass and signal intensity of the analyte species to that of chemical standards of known purity. As such, it is an example of a calculation using a known measurement equation with multiple inputs. Though multiple samples are often analyzed during purity evaluations in order to assess measurement repeatability, the uncertainty evaluation must also account for contributions from inputs to the measurement equation...
2016: Metrologia
Leonard Hanssen, B Wilthan, Christian Monte, Jörg Hollandt, Jacques Hameury, Jean-Remy Filtz, Ferruccio Girard, Mauro Battuello, Juntaro Ishii
The National Measurement Institutes (NMIs) of the United States, Germany, France, Italy and Japan, have joined in an inter-laboratory comparison of their infrared spectral emittance scales. This action is part of a series of supplementary inter-laboratory comparisons (including thermal conductivity and thermal diffusivity) sponsored by the Consultative Committee on Thermometry (CCT) Task Group on Thermophysical Quantities (TG-ThQ). The objective of this collaborative work is to strengthen the major operative National Measurement Institutes' infrared spectral emittance scales and consequently the consistency of radiative properties measurements carried out worldwide...
2016: Metrologia
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"