Read by QxMD icon Read

Virus Evolution

Sofía Grecco, Gregorio Iraola, Nicola Decaro, Alice Alfieri, Amauri Alfieri, Marina Gallo Calderón, Ana Paula da Silva, Daniela Name, Jaime Aldaz, Lucía Calleros, Ana Marandino, Gonzalo Tomás, Leticia Maya, Lourdes Francia, Yanina Panzera, Ruben Pérez
Canine parvovirus (CPV) is a fast-evolving single-stranded DNA virus that causes one of the most significant infectious diseases of dogs. Although the virus dispersed over long distances in the past, current populations are considered to be spatially confined and with only a few instances of migration between specific localities. It is unclear whether these dynamics occur in South America where global studies have not been performed. The aim of this study is to analyze the patterns of genetic variability in South American CPV populations and explore their evolutionary relationships with global strains...
January 2018: Virus Evolution
Nathan C Medd, Simon Fellous, Fergal M Waldron, Anne Xuéreb, Madoka Nakai, Jerry V Cross, Darren J Obbard
Drosophila suzukii (Matsumura) is one of the most damaging and costly pests to invade temperate horticultural regions in recent history. Conventional control of this pest is challenging, and an environmentally benign microbial biopesticide is highly desirable. A thorough exploration of the pathogens infecting this pest is not only the first step on the road to the development of an effective biopesticide, but also provides a valuable comparative dataset for the study of viruses in the model family Drosophilidae ...
January 2018: Virus Evolution
Claude Kwe Yinda, Stephen Mbigha Ghogomu, Nádia Conceição-Neto, Leen Beller, Ward Deboutte, Emiel Vanhulle, Piet Maes, Marc Van Ranst, Jelle Matthijnssens
Most human emerging infectious diseases originate from wildlife and bats are a major reservoir of viruses, a few of which have been highly pathogenic to humans. In some regions of Cameroon, bats are hunted and eaten as a delicacy. This close proximity between human and bats provides ample opportunity for zoonotic events. To elucidate the viral diversity of Cameroonian fruit bats, we collected and metagenomically screened eighty-seven fecal samples of Eidolon helvum and Epomophorus gambianus fruit bats. The results showed a plethora of known and novel viruses...
January 2018: Virus Evolution
Tiffany F Kautz, Mathilde Guerbois, Kamil Khanipov, Edward I Patterson, Rose M Langsjoen, Ruimei Yun, Kelsey L Warmbrod, Yuriy Fofanov, Scott C Weaver, Naomi L Forrester
During RNA virus replication, there is the potential to incorporate mutations that affect virulence or pathogenesis. For live-attenuated vaccines, this has implications for stability, as replication may result in mutations that either restore the wild-type phenotype via reversion or compensate for the attenuating mutations by increasing virulence (pseudoreversion). Recent studies have demonstrated that altering the mutation rate of an RNA virus is an effective attenuation tool. To validate the safety of low-fidelity mutations to increase vaccine attenuation, several mutations in the RNA-dependent RNA-polymerase (RdRp) were tested in the live-attenuated Venezuelan equine encephalitis virus vaccine strain, TC-83...
January 2018: Virus Evolution
Sebastián Duchêne, Edward C Holmes
Pithovirus sibericum is a giant (610 Kpb) double-stranded DNA virus discovered in a purportedly 30,000-year-old permafrost sample. A closely related virus, Pithovirus massiliensis , was recently isolated from a sewer in southern France. An initial comparison of these two virus genomes assumed that P. sibericum was directly ancestral to P. massiliensis and gave a maximum evolutionary rate of 2.60 × 10-5 nucleotide substitutions per site per year (subs/site/year). If correct, this would make pithoviruses among the fastest-evolving DNA viruses, with rates close to those seen in some RNA viruses...
January 2018: Virus Evolution
Ryan C Shean, Alexander L Greninger
Infectious pathogens are known for their rapid evolutionary rates with new mutations arising over days to weeks. The ability to rapidly recover whole genome sequences and analyze the spread and evolution of pathogens using genetic information and pathogen collection dates has lead to interest in real-time tracking of infectious transmission and outbreaks. However, the level of temporal resolution afforded by these analyses may conflict with definitions of what constitutes protected health information (PHI) and privacy requirements for de-identification for publication and public sharing of research data and metadata...
January 2018: Virus Evolution
Marcel Tongo, Gordon W Harkins, Jeffrey R Dorfman, Erik Billings, Sodsai Tovanabutra, Tulio de Oliveira, Darren P Martin
Subtype A is one of the rare HIV-1 group M (HIV-1M) lineages that is both widely distributed throughout the world and persists at high frequencies in the Congo Basin (CB), the site where HIV-1M likely originated. This, together with its high degree of diversity suggests that subtype A is amongst the fittest HIV-1M lineages. Here we use a comprehensive set of published near full-length subtype A sequences and A-derived genome fragments from both circulating and unique recombinant forms (CRFs/URFs) to obtain some insights into how frequently these lineages have independently seeded HIV-1M sub-epidemics in different parts of the world...
January 2018: Virus Evolution
Edward I Patterson, Kamil Khanipov, Mark M Rojas, Tiffany F Kautz, Dedeke Rockx-Brouwer, Georgiy Golovko, Levent Albayrak, Yuriy Fofanov, Naomi L Forrester
Viral diversity is theorized to play a significant role during virus infections, particularly for arthropod-borne viruses (arboviruses) that must infect both vertebrate and invertebrate hosts. To determine how viral diversity influences mosquito infection and dissemination Culex taeniopus mosquitoes were infected with the Venezuelan equine encephalitis virus endemic strain 68U201. Bodies and legs/wings of the mosquitoes were collected individually and subjected to multi-parallel sequencing. Virus sequence diversity was calculated for each tissue...
January 2018: Virus Evolution
Lu Lu, Nguyen Van Dung, Alasdair Ivens, Carlijn Bogaardt, Aine O'Toole, Juliet E Bryant, Juan Carrique-Mas, Nguyen Van Cuong, Pham Hong Anh, Maia A Rabaa, Ngo Tri Tue, Guy E Thwaites, Stephen Baker, Peter Simmonds, Mark Ej Woolhouse
Cross-species transmission of viruses poses a sustained threat to public health. Due to increased contact between humans and other animal species the possibility exists for cross-species transmissions and ensuing disease outbreaks. By using conventional PCR amplification and next generation sequencing, we obtained 130 partial or full genome kobuvirus sequences from humans in a sentinel cohort in Vietnam and various mammalian hosts including bats, rodents, pigs, cats, and civets. The evolution of kobuviruses in different hosts was analysed using Bayesian phylogenetic methods...
January 2018: Virus Evolution
Veronika Boskova, Tanja Stadler, Carsten Magnus
Each new virus introduced into the human population could potentially spread and cause a worldwide epidemic. Thus, early quantification of epidemic spread is crucial. Real-time sequencing followed by Bayesian phylodynamic analysis has proven to be extremely informative in this respect. Bayesian phylodynamic analyses require a model to be chosen and prior distributions on model parameters to be specified. We study here how choices regarding the tree prior influence quantification of epidemic spread in an emerging epidemic by focusing on estimates of the parameters clock rate, tree height, and reproductive number in the currently ongoing Zika virus epidemic in the Americas...
January 2018: Virus Evolution
Bradley R Jones, Anita Y M Howe, P Richard Harrigan, Jeffrey B Joy
New, costly, fast acting, therapies targeting the non-structural proteins 5A and 5B (NS5A and NS5B) regions of the hepatitis C virus (HCV) genome are curative in the majority of cases. Variants with certain mutations in the NS5A and NS5B regions of HCV have been shown to reduce susceptibility to direct-acting NS5A and NS5B therapy and are found in treatment naïve patients. Despite this, the ease with which these variants evolve is poorly known, as are their evolutionary and geographic origins. To address this crucial gap we inferred the evolutionary and geographic origins of resistance-associated variants (RAVs) in the HCV NS5A and NS5B regions of subtypes 1a, 1b, and 3a sequences available from global databases...
January 2018: Virus Evolution
María Arribas, Jacobo Aguirre, Susanna Manrubia, Ester Lázaro
Virus fitness is a complex parameter that results from the interaction of virus-specific characters (e.g. intracellular growth rate, adsorption rate, virion extracellular stability, and tolerance to mutations) with others that depend on the underlying fitness landscape and the internal structure of the whole population. Individual mutants usually have lower fitness values than the complex population from which they come from. When they are propagated and allowed to attain large population sizes for a sufficiently long time, they approach mutation-selection equilibrium with the concomitant fitness gains...
January 2018: Virus Evolution
Pavel Sagulenko, Vadim Puller, Richard A Neher
Mutations that accumulate in the genome of cells or viruses can be used to infer their evolutionary history. In the case of rapidly evolving organisms, genomes can reveal their detailed spatiotemporal spread. Such phylodynamic analyses are particularly useful to understand the epidemiology of rapidly evolving viral pathogens. As the number of genome sequences available for different pathogens has increased dramatically over the last years, phylodynamic analysis with traditional methods becomes challenging as these methods scale poorly with growing datasets...
January 2018: Virus Evolution
Diane Bigot, Célestine M Atyame, Mylène Weill, Fabienne Justy, Elisabeth A Herniou, Philippe Gayral
In the global context of arboviral emergence, deep sequencing unlocks the discovery of new mosquito-borne viruses. Mosquitoes of the species Culex pipiens , C. torrentium , and C. hortensis were sampled from 22 locations worldwide for transcriptomic analyses. A virus discovery pipeline was used to analyze the dataset of 0.7 billion reads comprising 22 individual transcriptomes. Two closely related 6.8 kb viral genomes were identified in C. pipiens and named as Culex pipiens associated tunisia virus (CpATV) strains Ayed and Jedaida...
January 2018: Virus Evolution
Avi Shukla, Anirvan Chatterjee, Kiran Kondabagil
Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different genomic regions of AVs exhibit distinct genealogies. Although the vertically transferred core genes and their functions are universally conserved across the nucleocytoplasmic large DNA virus (NCLDV) families and are essential for their replication, the horizontally acquired genes are variable across families and are lineage-specific...
January 2018: Virus Evolution
Sebastian Lequime, Vaea Richard, Van-Mai Cao-Lormeau, Louis Lambrechts
Like other pathogens with high mutation and replication rates, within-host dengue virus (DENV) populations evolve during infection of their main mosquito vector, Aedes aegypti . Within-host DENV evolution during transmission provides opportunities for adaptation and emergence of novel virus variants. Recent studies of DENV genetic diversity failed to detect convergent evolution of adaptive mutations in mosquito tissues such as midgut and salivary glands, suggesting that convergent positive selection is not a major driver of within-host DENV evolution in the vector...
July 2017: Virus Evolution
Denise A Marston, Daniel L Horton, Javier Nunez, Richard J Ellis, Richard J Orton, Nicholas Johnson, Ashley C Banyard, Lorraine M McElhinney, Conrad M Freuling, Müge Fırat, Nil Ünal, Thomas Müller, Xavier de Lamballerie, Anthony R Fooks
Host shift events play an important role in epizootics as adaptation to new hosts can profoundly affect the spread of the disease and the measures needed to control it. During the late 1990s, an epizootic in Turkey resulted in a sustained maintenance of rabies virus (RABV) within the fox population. We used Bayesian inferences to investigate whole genome sequences from fox and dog brain tissues from Turkey to demonstrate that the epizootic occurred in 1997 (±1 year). Furthermore, these data indicated that the epizootic was most likely due to a host shift from locally infected domestic dogs, rather than an incursion of a novel fox or dog RABV...
July 2017: Virus Evolution
Akhtar Ali, Marilyn J Roossinck
Population diversity was examined in individual and natural mixed infections of Cowpea chlorotic mottle virus (CCMV) and Cucumber mosaic virus (CMV) isolates in two systemic hosts, cowpea and Nicotiana benthamiana. Isolates of CCMV and CMV obtained from a cowpea field in Arkansas were separated biologically in cowpea and tobacco plants, respectively. After separation, individual and mixed cultures of both viruses were serially passaged ten times by mechanical inoculation in cowpea and N. benthamiana . High-fidelity reverse transcriptase-polymerase chain reaction (HiFi RT-PCR) of RNA 3, followed by cDNA cloning and sequence analysis was used to assess the quasispecies cloud size of CCMV and CMV populations in passages zero and ten of each host species...
July 2017: Virus Evolution
Migun Shakya, Shannon M Soucy, Olga Zhaxybayeva
Several bacterial and archaeal lineages produce nanostructures that morphologically resemble small tailed viruses, but, unlike most viruses, contain apparently random pieces of the host genome. Since these elements can deliver the packaged DNA to other cells, they were dubbed gene transfer agents (GTAs). Because many genes involved in GTA production have viral homologs, it has been hypothesized that the GTA ancestor was a virus. Whether GTAs represent an atypical virus, a defective virus, or a virus co-opted by the prokaryotes for some function, remains to be elucidated...
July 2017: Virus Evolution
Jayna Raghwani, Robin N Thompson, Katia Koelle
Most studies on seasonal influenza A/H3N2 virus adaptation have focused on the main antigenic gene, hemagglutinin. However, there is increasing evidence that the genome-wide genetic background of novel antigenic variants can influence these variants' emergence probabilities and impact their patterns of dominance in the population. This suggests that non-antigenic genes may be important in shaping the viral evolutionary dynamics. To better understand the role of selection on non-antigenic genes in the adaptive evolution of seasonal influenza viruses, we have developed a simple population genetic model that considers a virus with one antigenic and one non-antigenic gene segment...
July 2017: Virus Evolution
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"