Read by QxMD icon Read

Journal of Cardiovascular Development and Disease

Tara Burns, Yanping Yang, Emilye Hiriart, Andy Wessels
Congenital heart malformations are the most common type of defects found at birth. About 1% of infants are born with one or more heart defect on a yearly basis. Congenital Heart Disease (CHD) causes more deaths in the first year of life than any other congenital abnormality, and each year, nearly twice as many children die in the United States from CHD as from all forms of childhood cancers combined. Atrioventricular septal defects (AVSD) are congenital heart malformations affecting approximately 1 in 2000 live births...
December 2016: Journal of Cardiovascular Development and Disease
Heather Evans Anderson, Lionel Christiaen
Cardiac cell specification and the genetic determinants that govern this process are highly conserved among Chordates. Recent studies have established the importance of evolutionarily-conserved mechanisms in the study of congenital heart defects and disease, as well as cardiac regeneration. As a basal Chordate, the Ciona model system presents a simple scaffold that recapitulates the basic blueprint of cardiac development in Chordates. Here we will focus on the development and cellular structure of the heart of the ascidian Ciona as compared to other Chordates, principally vertebrates...
September 2016: Journal of Cardiovascular Development and Disease
Cody A Desjardins, Francisco J Naya
Proper formation of the mammalian heart requires precise spatiotemporal transcriptional regulation of gene programs in cardiomyocytes. Sophisticated regulatory networks have evolved to not only integrate the activities of distinct transcription factors to control tissue-specific gene programs but also, in many instances, to incorporate multiple members within these transcription factor families to ensure accuracy and specificity in the system. Unsurprisingly, perturbations in this elaborate transcriptional circuitry can lead to severe cardiac abnormalities...
September 2016: Journal of Cardiovascular Development and Disease
Roland Fr Schindler, Chiara Scotton, Vanessa French, Alessandra Ferlini, Thomas Brand
The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions...
June 15, 2016: Journal of Cardiovascular Development and Disease
Meera C Viswanathan, Anna C Blice-Baum, Tzu-Kang Sang, Anthony Cammarato
Valosin-containing protein (VCP) is a highly conserved mechanoenzyme that helps maintain protein homeostasis in all cells and serves specialized functions in distinct cell types. In skeletal muscle, it is critical for myofibrillogenesis and atrophy. However, little is known about VCP's role(s) in the heart. Its functional diversity is determined by differential binding of distinct cofactors/adapters, which is likely disrupted during disease. VCP mutations cause multisystem proteinopathy (MSP), a pleiotropic degenerative disorder that involves inclusion body myopathy...
June 2016: Journal of Cardiovascular Development and Disease
Daniel R Brown, Leigh Ann Samsa, Li Qian, Jiandong Liu
Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening...
June 2016: Journal of Cardiovascular Development and Disease
Manfred Frasch
The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system...
June 2016: Journal of Cardiovascular Development and Disease
Fei Lu, Adam D Langenbacher, Jau-Nian Chen
Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis...
April 9, 2016: Journal of Cardiovascular Development and Disease
Venkat Keshav Chivukula, Sevan Goenezen, Aiping Liu, Sandra Rugonyi
We analyzed heart wall motion and blood flow dynamics in chicken embryos using in vivo optical coherence tomography (OCT) imaging and computational fluid dynamics (CFD) embryo-specific modeling. We focused on the heart outflow tract (OFT) region of day 3 embryos, and compared normal (control) conditions to conditions after performing an OFT banding intervention, which alters hemodynamics in the embryonic heart and vasculature. We found that hemodynamics and cardiac wall motion in the OFT are affected by banding in ways that might not be intuitive a priori...
March 2016: Journal of Cardiovascular Development and Disease
TyAnna L Lovato, Richard M Cripps
The Drosophila cardiac tube was once thought to be a simple linear structure, however research over the past 15 years has revealed significant cellular and molecular complexity to this organ. Prior reviews have focused upon the gene regulatory networks responsible for the specification of the cardiac field and the activation of cardiac muscle structural genes. Here we focus upon highlighting the existence, function, and development of unique cell types within the dorsal vessel, and discuss their correspondence to analogous structures in the vertebrate heart...
2016: Journal of Cardiovascular Development and Disease
Peter S Martin, Benjamin Kloesel, Russell A Norris, Mark Lindsay, David Milan, Simon C Body
Bicuspid aortic valve (BAV) is the most common congenital valvular heart defect with an overall frequency of 0.5%-1.2%. BAVs result from abnormal aortic cusp formation during valvulogenesis, whereby adjacent cusps fuse into a single large cusp resulting in two, instead of the normal three, aortic cusps. Individuals with BAV are at increased risk for ascending aortic disease, aortic stenosis and coarctation of the aorta. The frequent occurrence of BAV and its anatomically discrete but frequent co-existing diseases leads us to suspect a common cellular origin...
December 2015: Journal of Cardiovascular Development and Disease
Wenduo Ye, Yingnan Song, Zhen Huang, Yanding Zhang, Yiping Chen
The definitive sinoatrial node (SAN), the primary pacemaker of the mammalian heart, develops from part of pro-pacemaking embryonic venous pole that expresses both Hcn4 and the transcriptional factor Shox2. It is noted that ectopic pacemaking activities originated from the myocardial sleeves of the pulmonary vein and systemic venous return, both derived from the Shox2 (+) pro-pacemaking cells in the venous pole, cause atrial fibrillation. However, the developmental link between the pacemaker properties in the embryonic venous pole cells and the SAN remains largely uncharacterized...
December 2015: Journal of Cardiovascular Development and Disease
Damien Duval, Pauline Labbé, Léa Bureau, Thierry Le Tourneau, Russell A Norris, Roger R Markwald, Robert Levine, Jean-Jacques Schott, Jean Mérot
Although the genetic basis of mitral valve prolapse (MVP) has now been clearly established, the molecular and cellular mechanisms involved in the pathological processes associated to a specific mutation often remain to be determined. The FLNA gene (encoding Filamin A; FlnA) was the first gene associated to non-syndromic X-linked myxomatous valvular dystrophy, but the impacts of the mutations on its function remain un-elucidated. Here, using the first repeats (1-8) of FlnA as a bait in a yeast two-hybrid screen, we identified the tyrosine phosphatase PTPN12 (PTP-PEST) as a specific binding partner of this region of FlnA protein...
September 8, 2015: Journal of Cardiovascular Development and Disease
Tori E Horne, Matthew VandeKopple, Kimberly Sauls, Sara N Koenig, Lindsey J Anstine, Vidu Garg, Russell A Norris, Joy Lincoln
The heart valve interstitial cell (VIC) population is dynamic and thought to mediate lay down and maintenance of the tri-laminar extracellular matrix (ECM) structure within the developing and mature valve throughout life. Disturbances in the contribution and distribution of valve ECM components are detrimental to biomechanical function and associated with disease. This pathological process is associated with activation of resident VICs that in the absence of disease reside as quiescent cells. While these paradigms have been long standing, characterization of this abundant and ever-changing valve cell population is incomplete...
September 2015: Journal of Cardiovascular Development and Disease
Kimberly Sauls, Katelynn Toomer, Katherine Williams, Amanda J Johnson, Roger R Markwald, Zoltan Hajdu, Russell A Norris
Mutations in the actin-binding gene Filamin-A have been linked to non-syndromic myxomatous valvular dystrophy and associated mitral valve prolapse. Previous studies by our group traced the adult valve defects back to developmental errors in valve interstitial cell-mediated extracellular matrix remodeling during fetal valve gestation. Mice deficient in Filamin-A exhibit enlarged mitral leaflets at E17.5, and subsequent progression to a myxomatous phenotype is observed by two months. For this study, we sought to define mechanisms that contribute to myxomatous degeneration in the adult Filamin-A-deficient mouse...
September 2015: Journal of Cardiovascular Development and Disease
Georg Vogler, Rolf Bodmer
Many of the major discoveries in the fields of genetics and developmental biology have been made using the fruit fly, Drosophila melanogaster. With regard to heart development, the conserved network of core cardiac transcription factors that underlies cardiogenesis has been studied in great detail in the fly, and the importance of several signaling pathways that regulate heart morphogenesis, such as Slit/Robo, was first shown in the fly model. Recent technological advances have led to a large increase in the genomic data available from patients with congenital heart disease (CHD)...
March 1, 2015: Journal of Cardiovascular Development and Disease
Vinal Menon, John F Eberth, Richard L Goodwin, Jay D Potts
Cardiac valve structure and function are primarily determined during early development. Consequently, abnormally-formed heart valves are the most common type of congenital heart defects. Several adult valve diseases can be backtracked to abnormal valve development, making it imperative to completely understand the process and regulation of heart valve development. Epithelial-to-mesenchymal transition (EMT) plays an important role in the development of heart valves. Though hemodynamics is vital to valve development, its role in regulating EMT is still unknown...
2015: Journal of Cardiovascular Development and Disease
Daniel P Judge, Hany Neamatalla, Russell A Norris, Robert A Levine, Jonathan T Butcher, Nicolas Vignier, Kevin H Kang, Quangtung Nguyen, Patrick Bruneval, Marie-Cécile Perier, Emmanuel Messas, Xavier Jeunemaitre, Annemarieke de Vlaming, Roger Markwald, Lucie Carrier, Albert A Hagège
MYBPC3 mutations cause hypertrophic cardiomyopathy, which is frequently associated with mitral valve (MV) pathology. We reasoned that increased MV size is caused by localized growth factors with paracrine effects. We used high-resolution echocardiography to compare Mybpc3-null, heterozygous, and wild-type mice (n = 84, aged 3-6 months) and micro-CT for MV volume (n = 6, age 6 months). Mybpc3-null mice showed left ventricular hypertrophy, dilation, and systolic dysfunction compared to heterozygous and wild-type mice, but no systolic anterior motion of the MV or left ventricular outflow obstruction...
2015: Journal of Cardiovascular Development and Disease
Allen J Yiu, Daniel Callaghan, Razia Sultana, Bidhan C Bandyopadhyay
Calcium phosphate (CaP) crystals are formed in pathological calcification as well as during stone formation. Although there are several theories as to how these crystals can develop through the combined interactions of biochemical and biophysical factors, the exact mechanism of such mineralization is largely unknown. Based on the published scientific literature, we found that common factors can link the initial stages of stone formation and calcification in anatomically distal tissues and organs. For example, changes to the spatiotemporal conditions of the fluid flow in tubular structures may provide initial condition(s) for CaP crystal generation needed for stone formation...
2015: Journal of Cardiovascular Development and Disease
Sara N Koenig, Kevin M Bosse, Holly A Nadorlik, Brenda Lilly, Vidu Garg
Thoracic aortic aneurysms (TAA) are a significant cause of morbidity and mortality in humans. While the exact etiology is unknown, genetic factors play an important role. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV) and aortopathy in humans. The aim of this study was to determine if haploinsufficiency of Notch1 contributes to aortopathy using Notch1(+/-); Nos3(-/-) mice. Echocardiographic analysis of Notch1(+/-); Nos3(-/-) mice reveals effacement of the sinotubular junction and a trend toward dilation of the aortic sinus...
2015: Journal of Cardiovascular Development and Disease
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"