Read by QxMD icon Read

Robotics and Biomimetics

K M Goher, N Mansouri, S O Fadlallah
Demographic reports indicate that population of older adults is growing significantly over the world and in particular in developed nations. Consequently, there are a noticeable number of demands for certain services such as health-care systems and assistive medical robots and devices. In today's world, different types of robots play substantial roles specifically in medical sector to facilitate human life, especially older adults. Assistive medical robots and devices are created in various designs to fulfill specific needs of older adults...
2017: Robotics and Biomimetics
O A Makinde, K Mpofu, R Vrabic, B I Ramatsetse
The development of a robotic-driven maintenance solution capable of automatically maintaining reconfigurable vibrating screen (RVS) machine when utilized in dangerous and hazardous underground mining environment has called for the design of a multifunctional robotic end-effector capable of carrying out all the maintenance tasks on the RVS machine. In view of this, the paper presents a bio-inspired approach which unfolds the design of a novel multifunctional robotic end-effector embedded with mechanical and control mechanisms capable of automatically maintaining the RVS machine...
2017: Robotics and Biomimetics
K M Goher, A M Almeshal, S A Agouri, A N K Nasir, M O Tokhi, M R Alenezi, T Al Zanki, S O Fadlallah
This paper presents the implementation of the hybrid spiral-dynamic bacteria-chemotaxis (HSDBC) approach to control two different configurations of a two-wheeled vehicle. The HSDBC is a combination of bacterial chemotaxis used in bacterial forging algorithm (BFA) and the spiral-dynamic algorithm (SDA). BFA provides a good exploration strategy due to the chemotaxis approach. However, it endures an oscillation problem near the end of the search process when using a large step size. Conversely; for a small step size, it affords better exploitation and accuracy with slower convergence...
2017: Robotics and Biomimetics
Tadeo Corradi, Peter Hall, Pejman Iravani
This paper explores ways of combining vision and touch for the purpose of object recognition. In particular, it focuses on scenarios when there are few tactile training samples (as these are usually costly to obtain) and when vision is artificially impaired. Whilst machine vision is a widely studied field, and machine touch has received some attention recently, the fusion of both modalities remains a relatively unexplored area. It has been suggested that, in the human brain, there exist shared multi-sensorial representations of objects...
2017: Robotics and Biomimetics
K M Goher, S O Fadlallah
This paper presents the performance of utilizing a bacterial foraging optimization algorithm on a PID control scheme for controlling a five DOF two-wheeled robotic machine with two-directional handling mechanism. The system under investigation provides solutions for industrial robotic applications that require a limited-space working environment. The system nonlinear mathematical model, derived using Lagrangian modeling approach, is simulated in MATLAB/Simulink(®) environment. Bacterial foraging-optimized PID control with decoupled nature is designed and implemented...
2017: Robotics and Biomimetics
Lei Tai, Ming Liu
Exploration in an unknown environment is an elemental application for mobile robots. In this paper, we outlined a reinforcement learning method aiming for solving the exploration problem in a corridor environment. The learning model took the depth image from an RGB-D sensor as the only input. The feature representation of the depth image was extracted through a pre-trained convolutional-neural-networks model. Based on the recent success of deep Q-network on artificial intelligence, the robot controller achieved the exploration and obstacle avoidance abilities in several different simulated environments...
2016: Robotics and Biomimetics
Hao Deng, Zeyang Xia, Shaokui Weng, Yangzhou Gan, Peng Fang, Jing Xiong
To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human. This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system. Motion sensing technology, which enables human-machine interaction in a novel and natural interface using gestures, has crucially inspired us to adopt this user-friendly and straightforward operation mode on robotic manipulation. Thus, in this paper, we presented a motion sensing-based framework for robotic manipulation, which recognizes gesture commands captured from motion sensing input device and drives the action of robots...
2016: Robotics and Biomimetics
Zhong Shen, Juan Yi, Xiaodong Li, Mark Hin Pei Lo, Michael Z Q Chen, Yong Hu, Zheng Wang
Soft sensors are required to accommodate the flexible and deformable natures of the human body in wearable device applications. They are also suitable for integration with soft robotic devices to monitor the performance status and provide references for feedback control. However, the choices for bending sensors are still highly limited. In this paper, a soft bending sensor is presented. By careful design with a blend of sensitive and insensitive regions, the sensor could be stretchable while being insensitive to stretching...
2016: Robotics and Biomimetics
Xuejun Yang, Huadong Dai, Xiaodong Yi, Yanzhen Wang, Shaowu Yang, Bo Zhang, Zhiyuan Wang, Yun Zhou, Xuefeng Peng
Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the architecture of micROS, including the distributed architecture for collective robot system as a whole and the layered architecture for every single node...
2016: Robotics and Biomimetics
Yang Tian, Shugen Ma
For determining whether kidnapping has happened and which type of kidnapping it is while a robot performs autonomous tasks in an unknown environment, a double guarantee kidnapping detection (DGKD) method has been proposed. The good performance of DGKD in a relative small environment is shown. However, a limitation of DGKD is found in a large-scale environment by our recent work. In order to increase the adaptability of DGKD in a large-scale environment, an improved method called probabilistic double guarantee kidnapping detection is proposed in this paper to combine probability of features' positions and the robot's posture...
2016: Robotics and Biomimetics
Zhongliang Jiang, Yu Sun, Peng Gao, Ying Hu, Jianwei Zhang
Robots play more important roles in daily life and bring us a lot of convenience. But when people work with robots, there remain some significant differences in human-human interactions and human-robot interaction. It is our goal to make robots look even more human-like. We design a controller which can sense the force acting on any point of a robot and ensure the robot can move according to the force. First, a spring-mass-dashpot system was used to describe the physical model, and the second-order system is the kernel of the controller...
2016: Robotics and Biomimetics
Weiwei Wan, Kensuke Harada
This paper presents an integrated assembly and motion planning system to recursively find the assembly sequence and motions to assemble two objects with the help of a horizontal surface as the supporting fixture. The system is implemented in both assembly level and motion level. In the assembly level, the system checks all combinations of the assembly sequences and gets a set of candidates. Then, for each candidate assembly sequence, the system incrementally builds regrasp graphs and performs recursive search to find a pick-and-place motion in the motion level to manipulate the base object as well as to assemble the other object to the base...
2016: Robotics and Biomimetics
Khaled M Goher
Despite the fact that there are various configurations of self-balanced two-wheeled machines (TWMs), the workspace of such systems is restricted by their current configurations and designs. In this work, the dynamic analysis of a novel configuration of TWMs is introduced that enables handling a payload attached to the intermediate body (IB) in two mutually perpendicular directions. This configuration will enlarge the workspace of the vehicle and increase its flexibility in material handling, objects assembly and similar industrial and service robot applications...
2016: Robotics and Biomimetics
Zonggao Mu, Liang Han, Wenfu Xu, Bing Li, Bin Liang
A space manipulator plays an important role in spacecraft capturing, repairing, maintenance, and so on. However, the harsh space environment will cause its joints fail to work. For a non-redundant manipulator, single joint locked failure will cause it to lose one degree of freedom (DOF), hence reducing its movement ability. In this paper, the key problems related to the fault-tolerant including kinematics, workspace, and trajectory planning of a non-redundant space manipulator under single joint failure are handled...
2016: Robotics and Biomimetics
Dongdong Bai, Chaoqun Wang, Bo Zhang, Xiaodong Yi, Yuhua Tang
The loop closure detection (LCD) is an essential part of visual simultaneous localization and mapping systems (SLAM). LCD is capable of identifying and compensating the accumulation drift of localization algorithms to produce an consistent map if the loops are checked correctly. Deep convolutional neural networks (CNNs) have outperformed state-of-the-art solutions that use traditional hand-crafted features in many computer vision and pattern recognition applications. After the great success of CNNs, there has been much interest in applying CNNs features to robotic fields such as visual LCD...
2016: Robotics and Biomimetics
Tianjiang Hu, Boxin Zhao, Dengqing Tang, Daibing Zhang, Weiwei Kong, Lincheng Shen
This article concentrates on open-source implementation on flying object detection in cluttered scenes. It is of significance for ground stereo-aided autonomous landing of unmanned aerial vehicles. The ground stereo vision guidance system is presented with details on system architecture and workflow. The Chan-Vese detection algorithm is further considered and implemented in the robot operating systems (ROS) environment. A data-driven interactive scheme is developed to collect datasets for parameter tuning and performance evaluating...
2016: Robotics and Biomimetics
Dengqing Tang, Tianjiang Hu, Lincheng Shen, Zhaowei Ma, Congyu Pan
This paper presents a new algorithm for extrinsically calibrating a multi-sensor system including multiple cameras and a 2D laser scanner. On the basis of the camera pose estimation using AprilTag, we design an AprilTag array as the calibration target and employ a nonlinear optimization to calculate the single-camera extrinsic parameters when multiple tags are in the field of view of the camera. The extrinsic parameters of camera-camera and laser-camera are then calibrated, respectively. A global optimization is finally used to refine all the extrinsic parameters by minimizing a re-projection error...
2016: Robotics and Biomimetics
Akshay Rao, Mohan Rajesh Elara, Karthikeyan Elangovan
This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local path planning algorithms...
2016: Robotics and Biomimetics
Peng Li, Shugen Ma, Congyi Lyu, Xin Jiang, Yunhui Liu
Pipe robots can perform inspection tasks to alleviate the damage caused by the pipe problems. Usually, the pipe robots carry batteries or use a power cable draining power from a vehicle that has many equipments for exploration. Nevertheless, the energy is limited for the whole inspection task and cannot keep the inspection time too long. In this paper, we use the total input energy as the cost function and a more accurate DC motor model to generate an optimal energy-efficient velocity control for a screw-drive pipe robot to make use of the limited energy in field environment...
2016: Robotics and Biomimetics
Chao Ren, Yi Sun, Shugen Ma
This paper studies passivity-based trajectory tracking control of an omnidirectional mobile robot. The proposed control design is simple to be implemented in practice, because of an effective exploitation of the structure of robot dynamics. First, the passivity property of the prototype robot is analyzed. Then the control system is designed based on the energy shaping plus damping approach. We find that the prototype robot itself has enough damping forces. As a result, only energy shaping is needed in our proposed controller, while the damping injection is unnecessary for our robot...
2016: Robotics and Biomimetics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"