Read by QxMD icon Read

Machine Learning in Medical Imaging

Tao Zhou, Kim-Han Thung, Xiaofeng Zhu, Dinggang Shen
In this paper, we aim to maximally utilize multimodality neuroimaging and genetic data to predict Alzheimer's disease (AD) and its prodromal status, i.e., a multi-status dementia diagnosis problem. Multimodality neuroimaging data such as MRI and PET provide valuable insights to abnormalities, and genetic data such as Single Nucleotide Polymorphism (SNP) provide information about a patient's AD risk factors. When used in conjunction, AD diagnosis may be improved. However, these data are heterogeneous (e.g., having different data distributions), and have different number of samples (e...
September 2017: Machine Learning in Medical Imaging
Yang Li, Jingyu Liu, Meilin Luo, Ke Li, Pew-Thian Yap, Minjeong Kim, Chong-Yaw Wee, Dinggang Shen
Recent advances in network modelling techniques have enabled the study of neurological disorders at a whole-brain level based on functional connectivity inferred from resting-state magnetic resonance imaging (rs-fMRI) scan possible. However, constructing a directed effective connectivity, which provides a more comprehensive characterization of functional interactions among the brain regions, is still a challenging task particularly when the ultimate goal is to identify disease associated brain functional interaction anomalies...
September 2017: Machine Learning in Medical Imaging
Nicha C Dvornek, Pamela Ventola, Kevin A Pelphrey, James S Duncan
Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However, current efforts that have identified ASD with high accuracy were limited to homogeneous, small datasets, while classification results for heterogeneous, multi-site data have shown much lower accuracy. In this paper, we propose the use of recurrent neural networks with long short-term memory (LSTMs) for classification of individuals with ASD and typical controls directly from the resting-state fMRI time-series...
September 2017: Machine Learning in Medical Imaging
Yang Li, Hao Yang, Ke Li, Pew-Thian Yap, Minjeong Kim, Chong-Yaw Wee, Dinggang Shen
Inferring effective brain connectivity network is a challenging task owing to perplexing noise effects, the curse of dimensionality, and inter-subject variability. However, most existing network inference methods are based on correlation analysis and consider the datum points individually, revealing limited information of the neuron interactions and ignoring the relations amongst the derivatives of the data. Hence, we proposed a novel ultra group-constrained sparse linear regression model for effective connectivity inference...
2017: Machine Learning in Medical Imaging
Yang Li, Jingyu Liu, Ke Li, Pew-Thian Yap, Minjeong Kim, Chong-Yaw Wee, Dinggang Shen
Functional connectivity network derived from resting-state fMRI data has been found as effective biomarkers for identifying patients with mild cognitive impairment from healthy elderly. However, the ordinary functional connectivity network is essentially a low-order network with the assumption that the brain is static during the entire scanning period, ignoring the temporal variations among correlations derived from brain region pairs. To overcome this weakness, we proposed a new type of high-order network to more accurately describe the relationship of temporal variations among brain regions...
2017: Machine Learning in Medical Imaging
Jun Wang, Qian Wang, Shitong Wang, Dinggang Shen
It is challenging to derive early diagnosis from neuroimaging data for autism spectrum disorder (ASD). In this work, we propose a novel sparse multi-view task-centralized (Sparse-MVTC) classification method for computer-assisted diagnosis of ASD. In particular, since ASD is known to be age- and sex-related, we partition all subjects into different groups of age/sex, each of which can be treated as a classification task to learn. Meanwhile, we extract multi-view features from functional magnetic resonance imaging to describe the brain connectivity of each subject...
2017: Machine Learning in Medical Imaging
Dong Nie, Li Wang, Roger Trullo, Jianfu Li, Peng Yuan, James Xia, Dinggang Shen
Computed tomography (CT) is commonly used as a diagnostic and treatment planning imaging modality in craniomaxillofacial (CMF) surgery to correct patient's bony defects. A major disadvantage of CT is that it emits harmful ionizing radiation to patients during the exam. Magnetic resonance imaging (MRI) is considered to be much safer and noninvasive, and often used to study CMF soft tissues (e.g., temporomandibular joint and brain). However, it is extremely difficult to accurately segment CMF bony structures from MRI since both bone and air appear to be black in MRI, along with low signal-to-noise ratio and partial volume effect...
2017: Machine Learning in Medical Imaging
Pei Dong, Xiaohuan Cao, Jun Zhang, Minjeong Kim, Guorong Wu, Dinggang Shen
Groupwise image registration provides an unbiased registration solution upon a population of images, which can facilitate the subsequent population analysis. However, it is generally computationally expensive for performing groupwise registration on a large set of images. To alleviate this issue, we propose to utilize a fast initialization technique for speeding up the groupwise registration. Our main idea is to generate a set of simulated brain MRI samples with known deformations to their group center. This can be achieved in the training stage by two steps...
2017: Machine Learning in Medical Imaging
Chen Zu, Yue Gao, Brent Munsell, Minjeong Kim, Ziwen Peng, Yingying Zhu, Wei Gao, Daoqiang Zhang, Dinggang Shen, Guorong Wu
The functional connectome has gained increased attention in the neuroscience community. In general, most network connectivity models are based on correlations between discrete-time series signals that only connect two different brain regions. However, these bivariate region-to-region models do not involve three or more brain regions that form a subnetwork. Here we propose a learning-based method to explore subnetwork biomarkers that are significantly distinguishable between two clinical cohorts. Learning on hypergraph is employed in our work...
October 2016: Machine Learning in Medical Imaging
Zhengwang Wu, Sang Hyun Park, Yanrong Guo, Yaozong Gao, Dinggang Shen
This paper proposes a novel method of using regression-guided deformable models for brain regions of interest (ROIs) segmentation. Different from conventional deformable segmentation, which often deforms shape model locally and thus sensitive to initialization, we propose to learn a regressor to explicitly guide the shape deformation, thus eventually improves the performance of ROI segmentation. The regressor is learned via two steps, (1) a joint classification and regression random forest (CRRF) and (2) an auto-context model...
October 2016: Machine Learning in Medical Imaging
Zhengwang Wu, Yaozong Gao, Feng Shi, Valerie Jewells, Dinggang Shen
Hippocampal subfields play important and divergent roles in both memory formation and early diagnosis of many neurological diseases, but automatic subfield segmentation is less explored due to its small size and poor image contrast. In this paper, we propose an automatic learning-based hippocampal subfields segmentation framework using multi-modality 3TMR images, including T1 MRI and resting-state fMRI (rs-fMRI). To do this, we first acquire both 3T and 7T T1 MRIs for each training subject, and then the 7T T1 MRI are linearly registered onto the 3T T1 MRI...
October 2016: Machine Learning in Medical Imaging
Minjeong Kim, Guorong Wu, Isrem Rekik, Dinggang Shen
The growing collection of longitudinal images for brain disease diagnosis necessitates the development of advanced longitudinal registration and anatomical labeling methods that can respect temporal consistency between images. However, the characteristics of such longitudinal images and how they lodge into the image manifold are often neglected in existing labeling methods. Indeed, most of them independently align atlases to each target time-point image for propagating the pre-defined atlas labels to the subject domain...
October 2016: Machine Learning in Medical Imaging
Jun Zhang, Yaozong Gao, Sang Hyun Park, Xiaopeng Zong, Weili Lin, Dinggang Shen
Quantitative analysis of perivascular spaces (PVSs) is important to reveal the correlations between cerebrovascular lesions and neurodegenerative diseases. In this study, we propose a learning-based segmentation framework to extract the PVSs from high-resolution 7T MR images. Specifically, we integrate three types of vascular filter responses into a structured random forest for classifying voxels into PVS and background. In addition, we also propose a novel entropy-based sampling strategy to extract informative samples in the background for training the classification model...
October 2016: Machine Learning in Medical Imaging
Polina Binder, Nematollah K Batmanghelich, Raul San Jose Estepar, Polina Golland
Emphysema is one of the hallmarks of Chronic Obstructive Pulmonary Disorder (COPD), a devastating lung disease often caused by smoking. Emphysema appears on Computed Tomography (CT) scans as a variety of textures that correlate with disease subtypes. It has been shown that the disease subtypes and textures are linked to physiological indicators and prognosis, although neither is well characterized clinically. Most previous computational approaches to modeling emphysema imaging data have focused on supervised classification of lung textures in patches of CT scans...
October 2016: Machine Learning in Medical Imaging
Renping Yu, Minghui Deng, Pew-Thian Yap, Zhihui Wei, Li Wang, Dinggang Shen
Brain magnetic resonance image segmentation is one of the most important tasks in medical image analysis and has considerable importance to the effective use of medical imagery in clinical and surgical setting. In particular, the tissue segmentation of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is crucial for brain measurement and disease diagnosis. A variety of studies have shown that the learning-based techniques are efficient and effective in brain tissue segmentation. However, the learning-based segmentation methods depend largely on the availability of good training labels...
October 2016: Machine Learning in Medical Imaging
Xiaofeng Zhu, Kim-Han Thung, Jun Zhang, Dinggang She
This paper proposes a framework of fast neuroimaging-based retrieval and AD analysis, by three key steps: (1) landmark detection, which efficiently extracts landmark-based neuroimaging features without the need of nonlinear registration in testing stage; (2) landmark selection, which removes redundant/noisy landmarks via proposing a feature selection method that considers structural information among landmarks; and (3) hashing, which converts high-dimensional features of subjects into binary codes, for efficiently conducting approximate nearest neighbor search and diagnosis of AD...
2016: Machine Learning in Medical Imaging
Xiaofeng Zhu, Heung-Il Suk, Kim-Han Thung, Yingying Zhu, Guorong Wu, Dinggang Shen
Neuroimaging data have been widely used to derive possible biomarkers for Alzheimer's Disease (AD) diagnosis. As only certain brain regions are related to AD progression, many feature selection methods have been proposed to identify informative features (i.e., brain regions) to build an accurate prediction model. These methods mostly only focus on the feature-target relationship to select features which are discriminative to the targets (e.g., diagnosis labels). However, since the brain regions are anatomically and functionally connected, there could be useful intrinsic relationships among features...
2016: Machine Learning in Medical Imaging
Xi Yang, Yan Jin, Xiaobo Chen, Han Zhang, Gang Li, Dinggang Shen
The resting-state functional MRI (rs-fMRI) has been demonstrated as a valuable neuroimaging tool to identify mild cognitive impairment (MCI) patients. Previous studies showed network breakdown in MCI patients with thresholded rs-fMRI connectivity networks. Recently, machine learning techniques have assisted MCI diagnosis by integrating information from multiple networks constructed with a range of thresholds. However, due to the difficulty of searching optimal thresholds, they are often predetermined and uniformly applied to the entire network...
2016: Machine Learning in Medical Imaging
Hongkun Ge, Guorong Wu, Li Wang, Yaozong Gao, Dinggang Shen
Mutual information (MI) has been widely used for registering images with different modalities. Since most inter-modality registration methods simply estimate deformations in a local scale, but optimizing MI from the entire image, the estimated deformations for certain structures could be dominated by the surrounding unrelated structures. Also, since there often exist multiple structures in each image, the intensity correlation between two images could be complex and highly nonlinear, which makes global MI unable to precisely guide local image deformation...
October 5, 2015: Machine Learning in Medical Imaging
Snehashis Roy, Aaron Carass, Jerry L Prince, Dzung L Pham
Segmenting T2-hyperintense white matter lesions from longitudinal MR images is essential in understanding progression of multiple sclerosis. Most lesion segmentation techniques find lesions independently at each time point, even though there are different noise and image contrast variations at each point in the time series. In this paper, we present a patch based 4D lesion segmentation method that takes advantage of the temporal component of longitudinal data. For each subject with multiple time-points, 4D patches are constructed from the T 1-w and FLAIR scans of all time-points...
October 2015: Machine Learning in Medical Imaging
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"