Read by QxMD icon Read

Frontiers in Bioengineering and Biotechnology

Michael J Imperiale, Arturo Casadevall
In the twenty-first century, biology faces a problem that has previously vexed other disciplines such as physics, namely the prospect that its knowledge domain could be used to generate biological agents with altered properties that enhanced their weapon potential. Biological weapons bring the additional dimension that these could be self-replicating, easy to manufacture and synthesized with commonly available expertise. This resulted in increasing concern about the type of research done and communicated, despite the fact that such research often has direct societal benefits, bringing the dual-use dilemma to biology...
2018: Frontiers in Bioengineering and Biotechnology
Michael T Guarnieri, Alida T Gerritsen, Calvin A Henard, Eric P Knoshaug
No abstract text is available yet for this article.
2018: Frontiers in Bioengineering and Biotechnology
Georges Hattab, Veit Wiesmann, Anke Becker, Tamara Munzner, Tim W Nattkemper
Time-lapse imaging of cell colonies in microfluidic chambers provides time series of bioimages, i.e., biomovies. They show the behavior of cells over time under controlled conditions. One of the main remaining bottlenecks in this area of research is the analysis of experimental data and the extraction of cell growth characteristics, such as lineage information. The extraction of the cell line by human observers is time-consuming and error-prone. Previously proposed methods often fail because of their reliance on the accurate detection of a single cell, which is not possible for high density, high diversity of cell shapes and numbers, and high-resolution images with high noise...
2018: Frontiers in Bioengineering and Biotechnology
Tara Baldacchino, William R Jacobs, Sean R Anderson, Keith Worden, Jennifer Rowson
This contribution presents a novel methodology for myolectric-based control using surface electromyographic (sEMG) signals recorded during finger movements. A multivariate Bayesian mixture of experts (MoE) model is introduced which provides a powerful method for modeling force regression at the fingertips, while also performing finger movement classification as a by-product of the modeling algorithm. Bayesian inference of the model allows uncertainties to be naturally incorporated into the model structure. This method is tested using data from the publicly released NinaPro database which consists of sEMG recordings for 6 degree-of-freedom force activations for 40 intact subjects...
2018: Frontiers in Bioengineering and Biotechnology
Yuval Barkan, Hedva Spitzer
The human visual system faces many challenges, among them the need to overcome the imperfections of its optics, which degrade the retinal image. One of the most dominant limitations is longitudinal chromatic aberration (LCA), which causes short wavelengths (blue light) to be focused in front of the retina with consequent blurring of the retinal chromatic image. The perceived visual appearance, however, does not display such chromatic distortions. The intriguing question, therefore, is how the perceived visual appearance of a sharp and clear chromatic image is achieved despite the imperfections of the ocular optics...
2018: Frontiers in Bioengineering and Biotechnology
Stephanie A Pasquesi, Susan S Margulies
Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain-skull displacement in the neonatal piglet head ( n  = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain-skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model...
2018: Frontiers in Bioengineering and Biotechnology
Sabine Szunerits, Rabah Boukherroub
Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing...
2018: Frontiers in Bioengineering and Biotechnology
Evon S Ereifej, Griffin M Rial, John K Hermann, Cara S Smith, Seth M Meade, Jacob M Rayyan, Keying Chen, He Feng, Jeffrey R Capadona
Clinical implantation of intracortical microelectrodes has been hindered, at least in part, by the perpetual inflammatory response occurring after device implantation. The neuroinflammatory response observed after device implantation has been correlated to oxidative stress that occurs due to neurological injury and disease. However, there has yet to be a definitive link of oxidative stress to intracortical microelectrode implantation. Thus, the objective of this study is to give direct evidence of oxidative stress following intracortical microelectrode implantation...
2018: Frontiers in Bioengineering and Biotechnology
Manuel Aleixandre, Juan M Cabellos, Teresa Arroyo, M C Horrillo
In this work, an electronic nose and a human panel were used for the quantification of wines formed by binary mixtures of four white grape varieties and two varieties of red wines at different percentages (from 0 to 100% in 10% steps for the electronic nose and from 0 to 100% in 25% steps for the human panel). The wines were prepared using the traditional method with commercial yeasts. Both techniques were able to quantify the mixtures tested, but it is important to note that the technology of the electronic nose is faster, simpler, and more objective than the human panel...
2018: Frontiers in Bioengineering and Biotechnology
Khushbu Rauniyar, Sawan Kumar Jha, Michael Jeltsch
Because virtually all tissues contain blood vessels, the importance of hemevascularization has been long recognized in regenerative medicine and tissue engineering. However, the lymphatic vasculature has only recently become a subject of interest. Central to the task of growing a lymphatic network are lymphatic endothelial cells (LECs), which constitute the innermost layer of all lymphatic vessels. The central molecule that directs proliferation and migration of LECs during embryogenesis is vascular endothelial growth factor C (VEGF-C)...
2018: Frontiers in Bioengineering and Biotechnology
Florian Oswald, I Katharina Stoll, Michaela Zwick, Sophia Herbig, Jörg Sauer, Nikolaos Boukis, Anke Neumann
Low productivities of bioprocesses using gaseous carbon and energy sources are usually caused by the low solubility of those gases (e.g., H2 and CO). It has been suggested that increasing the partial pressure of those gases will result in higher dissolved concentrations and should, therefore, be helpful to overcome this obstacle. Investigations of the late 1980s with mixtures of hydrogen and carbon monoxide showed inhibitory effects of carbon monoxide partial pressures above 0.8 bar. Avoiding any effects of carbon monoxide, we investigate growth and product formation of Clostridium ljungdahlii at absolute process pressures of 1, 4, and 7 bar in batch stirred tank reactor cultivations with carbon dioxide and hydrogen as sole gaseous carbon and energy source...
2018: Frontiers in Bioengineering and Biotechnology
Marietta Herrmann, Stephan Zeiter, Ursula Eberli, Maria Hildebrand, Karin Camenisch, Ursula Menzel, Mauro Alini, Sophie Verrier, Vincent A Stadelmann
Bone is an organ with high natural regenerative capacity and most fractures heal spontaneously when appropriate fracture fixation is provided. However, additional treatment is required for patients with large segmental defects exceeding the endogenous healing potential and for patients suffering from fracture non-unions. These cases are often associated with insufficient vascularization. Transplantation of CD34+ endothelial progenitor cells (EPCs) has been successfully applied to promote neovascularization of bone defects, however including extensive ex vivo manipulation of cells...
2018: Frontiers in Bioengineering and Biotechnology
Aleksandra Leszczynska, J Mary Murphy
Vascular calcification (VC) has witnessed a surge of interest. Vasculature is virtually an omnipresent organ and has a notably high capacity for repair throughout embryonic and adult life. Of the vascular diseases, atherosclerosis is a leading cause of morbidity and mortality on account of ectopic cartilage and bone formation. Despite the identification of a number of risk factors, all the current theories explaining pathogenesis of VC in atherosclerosis are far from complete. The most widely accepted response to injury theory and smooth muscle transdifferentiation to explain the VC observed in atherosclerosis is being challenged...
2018: Frontiers in Bioengineering and Biotechnology
Nicholas Greig Evans
The Department of Health and Human Services Framework for Guiding Funding Decisions about Proposed Research Involving Enhanced Potential Pandemic Pathogens (PPPs) contains a series of principles for governing the funding and conduct of gain-of-function (GOF) research resulting in the creation of PPPs. In this article, I address one of these principles, governing the replacement of GOF research with alternate experiments. I argue that the principle fails to address the way that different experiments can promote the same values as those promoted by GOF research resulting in PPPs...
2018: Frontiers in Bioengineering and Biotechnology
Yang Zhao, William Dunker, Yi-Tao Yu, John Karijolich
Pseudouridine is the most abundant internal RNA modification in stable noncoding RNAs (ncRNAs). It can be catalyzed by both RNA-dependent and RNA-independent mechanisms. Pseudouridylation impacts both the biochemical and biophysical properties of RNAs and thus influences RNA-mediated cellular processes. The investigation of nuclear-ncRNA pseudouridylation has demonstrated that it is critical for the proper control of multiple stages of gene expression regulation. Here, we review how nuclear-ncRNA pseudouridylation contributes to transcriptional regulation and pre-mRNA splicing...
2018: Frontiers in Bioengineering and Biotechnology
Paul Slezak, Cyrill Slezak, Joachim Hartinger, Andreas Herbert Teuschl, Sylvia Nürnberger, Heinz Redl, Rainer Mittermayr
There is continual demand for animal models that allow a quantitative assessment of angiogenic properties of biomaterials, therapies, and pharmaceuticals. In its simplest form, this is done by subcutaneous material implantation and subsequent vessel counting which usually omits spatial data. We have refined an implantation model and paired it with a computational analytic routine which outputs not only vessel count but also vessel density, distribution, and vessel penetration depth, that relies on a centric vessel as a reference point...
2018: Frontiers in Bioengineering and Biotechnology
Yutaka Kitamura, Taisuke Watanabe, Masayuki Nakamura, Kazushige Isobe, Hideo Kawabata, Kohya Uematsu, Kazuhiro Okuda, Koh Nakata, Takaaki Tanaka, Tomoyuki Kawase
Platelet-rich fibrin (PRF) clots have been used in regenerative dentistry most often, with the assumption that growth factor levels are concentrated in proportion to the platelet concentration. Platelet counts in PRF are generally determined indirectly by platelet counting in other liquid fractions. This study shows a method for direct estimation of platelet counts in PRF. To validate this method by determination of the recovery rate, whole-blood samples were obtained with an anticoagulant from healthy donors, and platelet-rich plasma (PRP) fractions were clotted with CaCl2 by centrifugation and digested with tissue-plasminogen activator...
2018: Frontiers in Bioengineering and Biotechnology
Shira Landau, Shaowei Guo, Shulamit Levenberg
Today, in vitro vessel network systems frequently serve as models for investigating cellular and functional mechanisms underlying angiogenesis and vasculogenesis. Understanding the cues triggering the observed cell migration, organization, and differentiation, as well as the time frame of these processes, can improve the design of engineered microvasculature. Here, we present first evidence of the migration of endothelial cells into the depths of the scaffold, where they formed blood vessels surrounded by extracellular matrix and supporting cells...
2018: Frontiers in Bioengineering and Biotechnology
Joshua L Heuslein, Stephanie P McDonnell, Ji Song, Brian H Annex, Richard J Price
The growth of endogenous collateral arteries that bypass arterial occlusion(s), or arteriogenesis, is a fundamental shear stress-induced adaptation with implications for treating peripheral arterial disease. MicroRNAs (miRs) are key regulators of gene expression in response to injury and have strong therapeutic potential. In a previous study, we identified miR-146a as a candidate regulator of vascular remodeling. Here, we tested whether miR-146a regulates in vitro angiogenic endothelial cell (EC) behaviors, as well as perfusion recovery, arteriogenesis, and angiogenesis in response to femoral arterial ligation (FAL) in vivo...
2018: Frontiers in Bioengineering and Biotechnology
Allison M Bosworth, Shannon L Faley, Leon M Bellan, Ethan S Lippmann
The neurovascular unit (NVU) is composed of neurons, astrocytes, pericytes, and endothelial cells that form the blood-brain barrier (BBB). The NVU regulates material exchange between the bloodstream and the brain parenchyma, and its dysfunction is a primary or secondary cause of many cerebrovascular and neurodegenerative disorders. As such, there are substantial research thrusts in academia and industry toward building NVU models that mimic endogenous organization and function, which could be used to better understand disease mechanisms and assess drug efficacy...
2017: Frontiers in Bioengineering and Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"