Read by QxMD icon Read

Molecular Therapy. Methods & Clinical Development

Amy M Lange, Ekaterina S Altynova, Giang N Nguyen, Denise E Sabatino
Factor VIII (FVIII) is a large glycoprotein that is challenging to express both in vitro and in vivo. Several studies suggest that high levels of FVIII expression can lead to cellular stress. After gene transfer, transgene expression is restricted to a subset of cells and the increased FVIII load per cell may impact activation of the unfolded protein response. We sought to determine whether increased FVIII expression in mice after adeno-associated viral liver gene transfer would affect the unfolded protein response and/or immune response to the transgene...
2016: Molecular Therapy. Methods & Clinical Development
Irene Zolotukhin, David M Markusic, Brett Palaschak, Brad E Hoffman, Meera A Srikanthan, Roland W Herzog
Hemophilia A and B are coagulation disorders resulting from the loss of functional coagulation factor VIII (FVIII) or factor IX proteins, respectively. Gene therapy for hemophilia with adeno-associated virus vectors has shown efficacy in hemophilia B patients. Although hemophilia A patients are more prevalent, the development of therapeutic adeno-associated virus vectors has been impeded by the size of the F8 cDNA and impaired secretion of FVIII protein. Further, it has been reported that over-expression of the FVIII protein induces endoplasmic reticulum stress and activates the unfolded protein response pathway both in vitro and in hepatocytes in vivo, presumably due to retention of misfolded FVIII protein within the endoplasmic reticulum...
2016: Molecular Therapy. Methods & Clinical Development
Giuseppe Ronzitti, Giulia Bortolussi, Remco van Dijk, Fanny Collaud, Severine Charles, Christian Leborgne, Patrice Vidal, Samia Martin, Bernard Gjata, Marcelo Simon Sola, Laetitia van Wittenberghe, Alban Vignaud, Philippe Veron, Piter J Bosma, Andres F Muro, Federico Mingozzi
Crigler-Najjar syndrome is a severe metabolic disease of the liver due to a reduced activity of the UDP Glucuronosyltransferase 1A1 (UGT1A1) enzyme. In an effort to translate to the clinic an adeno-associated virus vector mediated liver gene transfer approach to treat Crigler-Najjar syndrome, we developed and optimized a vector expressing the UGT1A1 transgene. For this purpose, we designed and tested in vitro and in vivo multiple codon-optimized UGT1A1 transgene cDNAs. We also optimized noncoding sequences in the transgene expression cassette...
2016: Molecular Therapy. Methods & Clinical Development
Md Nasimuzzaman, Danielle Lynn, Rebecca Ernst, Michele Beuerlein, Richard H Smith, Archana Shrestha, Scott Cross, Kevin Link, Carolyn Lutzko, Diana Nordling, David W Russell, Andre Larochelle, Punam Malik, Johannes C M Van der Loo
Compared to other integrating viral vectors, foamy virus (FV) vectors have distinct advantages as a gene transfer tool, including their nonpathogenicity, the ability to carry larger transgene cassettes, and increased stability of virus particles due to DNA genome formation within the virions. Proof of principle of its therapeutic utility was provided with the correction of canine leukocyte adhesion deficiency using autologous CD34(+) cells transduced with FV vector carrying the canine CD18 gene, demonstrating its long-term safety and efficacy...
2016: Molecular Therapy. Methods & Clinical Development
Anne-Sophie Rolland, Tatyana Kareva, Olga Yarygina, Nikolai Kholodilov, Robert E Burke
The use of viral vectors to transfect postmitotic neurons has provided an important research tool, and it offers promise for treatment of neurologic disease. The utility of vectors is enhanced by the use of selective promoters that permit control of the cellular site of expression. One potential clinical application is in the neurorestorative treatment of Parkinson's disease by the induction of new axon growth. However, many of the genes with an ability to restore axons have oncogenic potential. Therefore, clinical safety would be enhanced by restriction of expression to neurons affected by the disease, particularly dopamine neurons...
2016: Molecular Therapy. Methods & Clinical Development
Nicole Armbruster, Annalisa Lattanzi, Matthieu Jeavons, Laetitia Van Wittenberghe, Bernard Gjata, Thibaut Marais, Samia Martin, Alban Vignaud, Thomas Voit, Fulvio Mavilio, Martine Barkats, Ana Buj-Bello
Spinal muscular atrophy (SMA) is an autosomal recessive disease of variable severity caused by mutations in the SMN1 gene. Deficiency of the ubiquitous SMN function results in spinal cord α-motor neuron degeneration and proximal muscle weakness. Gene replacement therapy with recombinant adeno-associated viral (AAV) vectors showed therapeutic efficacy in several animal models of SMA. Here, we report a study aimed at analyzing the efficacy and biodistribution of a serotype-9, self-complementary AAV vector expressing a codon-optimized human SMN1 coding sequence (coSMN1) under the control of the constitutive phosphoglycerate kinase (PGK) promoter in neonatal SMNΔ7 mice, a severe animal model of the disease...
2016: Molecular Therapy. Methods & Clinical Development
Naoya Uchida, R Patrick Weitzel, Anna Shvygin, Luke P Skala, Lydia Raines, Aylin C Bonifacino, Allen E Krouse, Mark E Metzger, Robert E Donahue, John F Tisdale
Reduced intensity conditioning (RIC) is desirable for hematopoietic stem cell (HSC) gene therapy applications. However, low gene marking was previously observed in gene therapy trials, suggesting that RIC might be insufficient for (i) opening niches for efficient engraftment and/or (ii) inducing immunological tolerance for transgene-encoded proteins. Therefore, we evaluated both engraftment and tolerance for gene-modified cells using our rhesus HSC gene therapy model following RIC. We investigated a dose de-escalation of total body irradiation (TBI) from our standard dose of 10Gy (10, 8, 6, and 4Gy), in which rhesus CD34(+) cells were transduced with a VSVG-pseudotyped chimeric HIV-1 vector encoding enhanced green fluorescent protein (GFP) (or enhanced yellow fluorescent protein (YFP))...
2016: Molecular Therapy. Methods & Clinical Development
Dario Marangoni, Ronald A Bush, Yong Zeng, Lisa L Wei, Lucia Ziccardi, Camasamudram Vijayasarathy, Joshua T Bartoe, Kiran Palyada, Maria Santos, Suja Hiriyanna, Zhijian Wu, Peter Colosi, Paul A Sieving
X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and is one of the most common causes of macular degeneration in young men. Our therapeutic approach for XLRS is based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal (IVT) route. Two Good Laboratory Practice studies, a 9-month study in New Zealand White rabbits (n = 124) injected with AAV8-scRS/IRBPhRS at doses of 2E9, 2E10, 2E11, and 1...
2016: Molecular Therapy. Methods & Clinical Development
Merry Zc Ruan, Vincenzo Cerullo, Racel Cela, Chris Clarke, Evy Lundgren-Akerlund, Michael A Barry, Brendan Hl Lee
Osteoarthritis (OA) is a joint disease characterized by degeneration of the articular cartilage, subchondral bone remodeling, and secondary inflammation. It is among the top three causes of chronic disability, and currently there are no treatment options to prevent disease progression. The localized nature of OA makes it an ideal candidate for gene and cell therapy. However, gene and cell therapy of OA is impeded by inefficient gene transduction of chondrocytes. In this study, we developed a broadly applicable system that retargets cell surface receptors by conjugating antibodies to the capsid of helper-dependent adenoviral vectors (HDVs)...
2016: Molecular Therapy. Methods & Clinical Development
Shigeki Yagyu, Valentina Hoyos, Francesca Del Bufalo, Malcolm K Brenner
Expression of the inducible caspase-9 (iC9) suicide gene is one of the most appealing safety strategies for cell therapy and has been applied for human-induced pluripotent stem cells (hiPSC) to control the cell fate of hiPSC. iC9 can induce cell death of over 99% of iC9-transduced hiPSC (iC9-hiPSC) in less than 24 hours after exposure to chemical inducer of dimerization (CID). There is, however, a small number of resistant cells that subsequently outgrows. To ensure greater uniformity of the hiPSC response to iC9 activation, we purified a resistant population by culturing iC9-hiPSC with CID and analyzing the mechanisms by which the cells evade killing...
2016: Molecular Therapy. Methods & Clinical Development
Gaudensia Mutua, Bashir Farah, Robert Langat, Jackton Indangasi, Simon Ogola, Brian Onsembe, Jakub T Kopycinski, Peter Hayes, Nicola J Borthwick, Ambreen Ashraf, Len Dally, Burc Barin, Annika Tillander, Jill Gilmour, Jan De Bont, Alison Crook, Drew Hannaman, Josephine H Cox, Omu Anzala, Patricia E Fast, Marie Reilly, Kundai Chinyenze, Walter Jaoko, Tomáš Hanke, The Hiv-Core 004 Study Group
We are developing a pan-clade HIV-1 T-cell vaccine HIVconsv, which could complement Env vaccines for prophylaxis and be a key to HIV cure. Our strategy focuses vaccine-elicited effector T-cells on functionally and structurally conserved regions (not full-length proteins and not only epitopes) of the HIV-1 proteome, which are common to most global variants and which, if mutated, cause a replicative fitness loss. Our first clinical trial in low risk HIV-1-negative adults in Oxford demonstrated the principle that naturally mostly subdominant epitopes, when taken out of the context of full-length proteins/virus and delivered by potent regimens involving combinations of simian adenovirus and poxvirus modified vaccinia virus Ankara, can induce robust CD8(+) T cells of broad specificities and functions capable of inhibiting in vitro HIV-1 replication...
2016: Molecular Therapy. Methods & Clinical Development
Julie R Beegle, Nataly Lessa Magner, Stefanos Kalomoiris, Aja Harding, Ping Zhou, Catherine Nacey, Jeannine Logan White, Karen Pepper, William Gruenloh, Geralyn Annett, Jan A Nolta, Fernando A Fierro
Numerous clinical trials are utilizing mesenchymal stem cells (MSC) to treat critical limb ischemia, primarily for their ability to secrete signals that promote revascularization. These cells have demonstrated clinical safety, but their efficacy has been limited, possibly because these paracrine signals are secreted at subtherapeutic levels. In these studies the combination of cell and gene therapy was evaluated by engineering MSC with a lentivirus to overexpress vascular endothelial growth factor (VEGF). To achieve clinical compliance, the number of viral insertions was limited to 1-2 copies/cell and a constitutive promoter with demonstrated clinical safety was used...
2016: Molecular Therapy. Methods & Clinical Development
Vijayendra Dasari, Andrea Schuessler, Corey Smith, Yide Wong, John J Miles, Mark J Smyth, George Ambalathingal, Ross Francis, Scott Campbell, Daniel Chambers, Rajiv Khanna
Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP) as a tool for rapid generation of multivirus-specific T-cells in a single step...
2016: Molecular Therapy. Methods & Clinical Development
Arnold Park, Patrick Hong, Sohui T Won, Patricia A Thibault, Frederic Vigant, Kasopefoluwa Y Oguntuyo, Justin D Taft, Benhur Lee
The advent of RNA-guided endonuclease (RGEN)-mediated gene editing, specifically via CRISPR/Cas9, has spurred intensive efforts to improve the efficiency of both RGEN delivery and targeted mutagenesis. The major viral vectors in use for delivery of Cas9 and its associated guide RNA, lentiviral and adeno-associated viral systems, have the potential for undesired random integration into the host genome. Here, we repurpose Sendai virus, an RNA virus with no viral DNA phase and that replicates solely in the cytoplasm, as a delivery system for efficient Cas9-mediated gene editing...
2016: Molecular Therapy. Methods & Clinical Development
Haibo Wang, Xiaokun Han, Colin A Bretz, Silke Becker, Deeksha Gambhir, George W Smith, R Jude Samulski, Erika S Wittchen, Lawrence A Quilliam, Magdalena Chrzanowska-Wodnicka, M Elizabeth Hartnett
To test the hypothesis that increased Rap1a activity specifically in retinal pigment epithelial cells resists choroidal neovascularization (CNV), self-complementary adeno-associated virus 2 (scAAV2) with RPE65-promoter-driven GFP vectors were generated and introduced subretinally into Rap1b-deficient mice. Six-week-old mice that received subretinal control (scAAV2-Con) or constitutively active Rap1a (scAAV2-CARap1a) showed strong GFP at the 5 × 10(8) viral particle/µl dose 5 weeks later without altering retinal morphology or function...
2016: Molecular Therapy. Methods & Clinical Development
Hiroki Takeda, Takaomi Kurioka, Taku Kaitsuka, Kazuhito Tomizawa, Takeshi Matsunobu, Farzana Hakim, Kunio Mizutari, Toru Miwa, Takao Yamada, Momoko Ise, Akihiro Shiotani, Eiji Yumoto, Ryosei Minoda
Cell-penetrating peptides (CPPs) are short sequences of amino acids that facilitate the penetration of conjugated cargoes across mammalian cell membranes, and as such, they may provide a safe and effective method for drug delivery to the inner ear. Simple polyarginine peptides have been shown to induce significantly higher cell penetration rates among CPPs. Herein, we show that a peptide consisting of nine arginines ("9R") effectively delivered enhanced green fluorescent protein (EGFP) into guinea pig cochleae via the round window niche without causing any deterioration in auditory function...
2016: Molecular Therapy. Methods & Clinical Development
Elizabeth M Everson, Miles E Olzsko, David J Leap, Jonah D Hocum, Grant D Trobridge
Hematopoietic stem cell (HSC) gene therapy using retroviral vectors has immense potential, but vector-mediated genotoxicity limits use in the clinic. Lentiviral vectors are less genotoxic than gammaretroviral vectors and have become the vector of choice in clinical trials. Foamy retroviral vectors have a promising integration profile and are less prone to read-through transcription than gammaretroviral or lentiviral vectors. Here, we directly compared the safety and efficacy of foamy vectors to lentiviral vectors in human CD34(+) repopulating cells in immunodeficient mice...
2016: Molecular Therapy. Methods & Clinical Development
Fabienne Cocchiarella, Maria Carmela Latella, Valentina Basile, Francesca Miselli, Melanie Galla, Carol Imbriano, Alessandra Recchia
The Sleeping Beauty (SB) transposase and, in particular, its hyperactive variant SB100X raises increasing interest for gene therapy application, including genome modification and, more recently, induced pluripotent stem cells (iPS) reprogramming. The documented cytotoxicity of the transposase, when constitutively expressed by an integrating retroviral vector (iRV), has been circumvented by the transient delivery of SB100X using retroviral mRNA transfer. In this study, we developed an alternative, safe, and efficient transposase delivery system based on a tetracycline-ON regulated expression cassette and the rtTA2(S)-M2 transactivator gene transiently delivered by integration-defective lentiviral vectors (IDLVs)...
2016: Molecular Therapy. Methods & Clinical Development
Yohei Sato, Hiroshi Kobayashi, Takashi Higuchi, Yohta Shimada, Hiroyuki Ida, Toya Ohashi
Pompe disease (PD) is a lysosomal disorder caused by acid α-glucosidase (GAA) deficiency. Progressive muscular weakness is the major symptom of PD, and enzyme replacement therapy can improve the clinical outcome. However, to achieve a better clinical outcome, alternative therapeutic strategies are being investigated, including gene therapy and pharmacological chaperones. We previously used lentiviral vector-mediated GAA gene transfer in PD patient-specific induced pluripotent stem cells. Some therapeutic efficacy was observed, although glycogen accumulation was not normalized...
2016: Molecular Therapy. Methods & Clinical Development
Jack W Hickmott, Chih-Yu Chen, David J Arenillas, Andrea J Korecki, Siu Ling Lam, Laurie L Molday, Russell J Bonaguro, Michelle Zhou, Alice Y Chou, Anthony Mathelier, Sanford L Boye, William W Hauswirth, Robert S Molday, Wyeth W Wasserman, Elizabeth M Simpson
Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy...
2016: Molecular Therapy. Methods & Clinical Development
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"