Read by QxMD icon Read

Mass Spectrometry

Toshiki Sugai
The relationship between mass and charge has been a crucial topic in mass spectrometry (MS) because the mass itself is typically evaluated based on the m/z ratio. Despite the fact that this measurement is indirect, a precise mass can be obtained from the m/z value with a high m/z resolution up to 105 for samples in the low mass and low charge region under 10,000 Da and 20 e, respectively. However, the target of MS has recently been expanded to the very heavy region of Mega or Giga Da, which includes large particles and biocomplexes, with very large and widely distributed charge from kilo to Mega range...
2017: Mass Spectrometry
Mari Aida, Takahiro Iwai, Yuki Okamoto, Satoshi Kohno, Ken Kakegawa, Hidekazu Miyahara, Yasuo Seto, Akitoshi Okino
We developed a dual plasma desorption/ionization system using two plasmas for the semi-invasive analysis of compounds on heat-sensitive substrates such as skin. The first plasma was used for the desorption of the surface compounds, whereas the second was used for the ionization of the desorbed compounds. Using the two plasmas, each process can be optimized individually. A successful analysis of phenyl salicylate and 2-isopropylpyridine was achieved using the developed system. Furthermore, we showed that it was possible to detect the mass signals derived from a sample even at a distance 50 times greater than the distance from the position at which the samples were detached...
2017: Mass Spectrometry
Kenya Sakamoto, Kanako Sekimoto, Mitsuo Takayama
Hydrogen fluoride (HF) was produced by a homemade HF generator in order to investigate the properties of strong hydrogen-bonded clusters such as (HF) n . The HF molecules were ionized in the form of complex ions associated with the negative core ions Y(-) produced by atmospheric pressure corona discharge ionization (APCDI). The use of APCDI in combination with the homemade HF generator led to the formation of negative-ion HF clusters Y(-)(HF) n (Y=F, O2), where larger clusters with n≥4 were not detected. The mechanisms for the formation of the HF, F(-)(HF) n , and O2(-)(HF) n species were discussed from the standpoints of the HF generator and APCDI MS...
2017: Mass Spectrometry
Shigeo Hayakawa
High energy collision processes for singly charged positive ions using an alkali metal target are confirmed, as a charge inversion mass spectrometry, to occur by electron transfers in successive collisions and the dissociation processes involve the formation of energy-selected neutral species from near-resonant neutralization with alkali metal targets. A doubly charged thermometer molecule was made to collide with alkali metal targets to give singly and doubly charged positive ions. The internal energy resulting from the electron transfer with the alkali metal target was very narrow and centered at a particular energy...
2017: Mass Spectrometry
Tohru Yamagaki, Yasushi Makino
Six different sequences of hexasaccharides, pyridylaminated malto-hexaoses containing one N-acetyl hexosamine (HexNAc) residue, were analyzed using matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF) mass spectrometry (MS). Based on the product ion spectra of sodium adducts [M+Na](+), the chemical species of the observed product ions contained a HexNAc residue and had high ion abundance, indicating that the HexNAc residue had a higher affinity to sodium atom than glucopyranose. The acetamide group coordinated easily to sodium atom...
2017: Mass Spectrometry
Yin-Hung Lai, Yi-Sheng Wang
Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is one of the most widely used soft ionization methods for biomolecules, the lack of detailed understanding of ionization mechanisms restricts its application in the analysis of carbohydrates. Structural identification of carbohydrates achieved by MALDI mass spectrometry helps us to gain insights into biological functions and pathogenesis of disease. In this review, we highlight mechanistic details of MALDI, including both ionization and desorption...
2017: Mass Spectrometry
Akira Motoyama, Keishi Kihara
To provide safe and effective products to customers in the cosmetic industry, mass spectrometry (MS) is an indispensable analytical tool. In addition to its outstanding sensitivity and specificity, the method is applicable to a wide variety of compounds, which makes it irreplaceable for the development of cosmetics, which requires the analysis of complex systems. Because most cosmetic products are applied directly to the skin and function as they are designed, monitoring the molecular compositions of endogenous or exogenous compounds in or on the skin is crucial to ensure the safety and efficacy of a cosmetic product...
2017: Mass Spectrometry
Yukina Tatsuta, Yukie Tanaka, Akari Ikeda, Shigeru Matsukawa, Hajime Katano, Shu Taira
We compared two ionization methods, matrix assisted laser desorption/ionization (MALDI) and nanoparticle assisted laser desorption/ionization (Nano-PALDI) mass spectrometry (MS), for the analysis of amino acids derivatized with Py-Tag™ that consists pyrylium-based compound. Py-Tag is a useful stable derivatization reagent due to wide mass differences (using (13)C as the sole stable labelling isotope). For Py-Tag labelled lysine, sensitive signals that showed less noise with a ten times higher sensitivity, showed a wider mass difference by Nano-PALDI MS compared to MALDI MS...
2017: Mass Spectrometry
Tohru Yamagaki
No abstract text is available yet for this article.
2017: Mass Spectrometry
Lee Chuin Chen, Kentaro Yoshimura, Satoshi Ninomiya, Sen Takeda, Kenzo Hiraoka
In this paper, we briefly review the remote mass spectrometric techniques that are viable to perform "endoscopic mass spectrometry," i.e., in-situ and in-vivo MS analysis inside the cavity of human or animal body. We also report our experience with a moving string sampling probe for the remote sample collection and the transportation of adhered sample to an ion source near the mass spectrometer. With a miniaturization of the probe, the method described here has the potential to be fit directly into a medical endoscope...
2017: Mass Spectrometry
Yuki Ohta, Kotaro Kameda, Mei Matsumoto, Nana Kawasaki
Because the ionization efficiency for glycopeptides is lower than that of peptides in electrospray ionization, it is frequently necessary to enrich them prior to their analysis using liquid chromatography coupled with tandem mass spectrometry. Although some methods for selectively enriching glycopeptides (e.g., lectin, agarose, and cellulose methods) have been reported, they are time-consuming (procedures that require several hours) and may not be applicable to submicrogram-sized samples. Here, we report on a rapid, simple method for enriching glycopeptides in small sample amounts using cellulose hydrophilic interaction (cellulose HILIC)/reversed-phase (RP) stop-and-go extraction tips (StageTips)...
2017: Mass Spectrometry
Takashi Nishikaze
Mass spectrometry (MS) has become an indispensable tool for analyzing post translational modifications of proteins, including N-glycosylated molecules. Because most glycosylation sites carry a multitude of glycans, referred to as "glycoforms," the purpose of an N-glycosylation analysis is glycoform profiling and glycosylation site mapping. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has unique characteristics that are suited for the sensitive analysis of N-glycosylated products...
2017: Mass Spectrometry
Atsushi Kitanaka, Hironori Juichi, Yoichiro Nihashi, Masahiro Miyashita, Hisashi Miyagawa
It has been shown that chemical modification of the peptide N-terminus with a charged tag greatly affects the fragmentation process caused by collision-induced dissociation to obtain more interpretable product ion spectra. In this study, we examined the selective introduction of a charged tag, 4-(guanidinomethyl)benzoic acid (Gmb), into the peptide N-terminus. After optimization of the reaction conditions, we found that the most effective conversion in terms of the reaction rate and selectivity was achieved by reacting the peptide with the active ester of Gmb, prepared using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) at pH 7...
2017: Mass Spectrometry
Takashi Baba, J Larry Campbell, J C Yves Le Blanc, Paul R S Baker, James W Hager, Bruce A Thomson
Collision-induced dissociation (CID) is the most common tool for molecular analysis in mass spectrometry to date. However, there are difficulties associated with many applications because CID does not provide sufficient information to permit details of the molecular structures to be elucidated, including post-translational-modifications in proteomics, as well as isomer differentiation in metabolomics and lipidomics. To face these challenges, we are developing fast electron-based dissociation devices using a novel radio-frequency ion trap (i...
2017: Mass Spectrometry
Thierry Fouquet, Laurence Charles, Hiroaki Sato
Ethoxy-, methoxy- and hydroxy-terminated polydimethylsiloxanes (PDMS) are formed as the result of the methanolysis of diethoxy-ended PDMS during its infusion in electrospray ionization. The negative ion mode permits only hydroxy-ended products to be detected, and isomeric interference is avoided in single stage and tandem mass spectrometry. The routes for the fragmentation of (ethyl, hydroxy)-, (methyl, hydroxy)- and (hydro, hydroxy)-ended PDMS upon collision activated dissociation (CAD) were explored in the negative ion mode using either formate or acetate anion adduction...
2017: Mass Spectrometry
Fumio Matsuda, Atsumi Tomita, Hiroshi Shimizu
In targeted proteomics using liquid chromatography-tandem triple quadrupole mass spectrometry (LC/MS/MS) in the selected reaction monitoring (SRM) mode, selecting the best observable or visible peptides is a key step in the development of SRM assay methods of target proteins. A direct comparison of signal intensities among all candidate peptides by brute-force LC/MS/MS analysis is a concrete approach for peptide selection. However, the analysis requires an SRM method with hundreds of transitions. This study reports on the development of a method for predicting and identifying hopeless peptides to reduce the number of candidate peptides needed for brute-force experiments...
2017: Mass Spectrometry
Thierry Fouquet, Hiroaki Sato
The concept of a fractional base unit for the Kendrick mass defect (KMD) analysis of polymer ions is introduced for the first time. A fraction of the ethylene oxide (EO) repeat unit (namely EO/8) has been used for the KMD analysis of a poly(ethylene oxide) and found to amplify the variations of KMD between monoisotopic and (13)C isotopes, producing an isotopically resolved KMD plot at full scale when the KMD plot computed with EO is fuzzy. The expansion of the KMD dimension using a fractional base unit has then been successfully used to unequivocally discriminate all the distributions from a blend of poly(ethylene oxide)s in a high resolution KMD plot calculated with EO/3 as base unit...
2017: Mass Spectrometry
Sy-Chyi Cheng, Shih-His Chen, Jentaie Shiea
Flame-induced atmospheric pressure chemical ionization (FAPCI) is a solvent and high voltage-free APCI technique. It uses a flame to produce charged species that reacts with analytes for ionization, and generates intact molecular ions from organic compounds with minimal fragmentation. In this study, desorption FAPCI/MS was developed to rapidly characterize thermally stable organic compounds in liquid, cream, and solid states. Liquid samples were introduced into the ion source through a heated nebulizer, and the analytes formed in the heated nebulizer reacted with charged species in the source...
2017: Mass Spectrometry
Jen-Yi Hsu, Chia-Lung Shih, Pao-Chi Liao
Phthalates are chemicals widely used in industry and the consequences on human health caused by exposure to these agents are of significant interest currently. The urinary metabolites of phthalates can be measured and used as exposure markers for the assessment of the actual internal contamination of phthalates coming from different sources and absorbed by various ways. The purpose of this paper is to review the markers for exposure and risk assessment of phthalates such as di-methyl phthalate (DMP), di-ethyl phthalate (DEP), di-butyl phthalate (DBP), benzylbutyl phthalate (BBP), di-(2-ethylhexyl)phthalate (DEHP), di-(2-propylheptyl)phthalate (DPHP), di-iso-nonyl phthalate (DINP), di-n-octyl phthalate (DnOP) and di-iso-decyl phthalate (DIDP), and introduction of the analytical approach of three metabolomics data processing approaches that can be used for chemical exposure marker discovery in urine with high-resolution mass spectrometry (HRMS) data...
2017: Mass Spectrometry
Anil Kumar Meher, Yu-Chie Chen
Generation of analyte ions in gas phase is a primary requirement for mass spectrometric analysis. One of the ionization techniques that can be used to generate gas phase ions is electrospray ionization (ESI). ESI is a soft ionization method that can be used to analyze analytes ranging from small organics to large biomolecules. Numerous ionization techniques derived from ESI have been reported in the past two decades. These ion sources are aimed to achieve simplicity and ease of operation. Many of these ionization methods allow the flexibility for elimination or minimization of sample preparation steps prior to mass spectrometric analysis...
2017: Mass Spectrometry
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"