Read by QxMD icon Read

Frontiers in Cellular and Infection Microbiology

Zezhang T Wen, Sumei Liao, Jacob P Bitoun, Arpan De, Ashton Jorgensen, Shihai Feng, Xiaoming Xu, Patrick S G Chain, Page W Caufield, Hyun Koo, Yihong Li
Like Streptococcus mutans, lactobacilli are commonly isolated from carious sites, although their exact role in caries development remains unclear. This study used mixed-species models to analyze biofilm formation by major groups of oral lactobacilli, including L. casei, L. fermentum, L. rhamnosus, L. salivarius ssp. salivarius, and L. gasseri. The results showed that lactobacilli did not form good biofilms when grown alone, although differences existed between different species. When grown together with S. mutans, biofilm formation by L...
2017: Frontiers in Cellular and Infection Microbiology
Jiyeon Si, Cheonghoon Lee, GwangPyo Ko
The oral microbiota plays a critical role in both local and systemic inflammation. Metabolic syndrome (MetS) is characterized by low-grade inflammation, and many studies have been conducted on the gut microbiota from stool specimens. However, the etiological role of the oral microbiota in the development of MetS is unclear. In this study, we analyzed the oral and gut microbiome from 228 subgingival plaque and fecal samples from a Korean twin-family cohort with and without MetS. Significant differences in microbial diversity and composition were observed in both anatomical niches...
2017: Frontiers in Cellular and Infection Microbiology
Qing Pan, Qiang Zhang, Jun Chu, Roshan Pais, Shanshan Liu, Cheng He, Francis O Eko
The polymorphic membrane protein D (Pmp18D) is a 160-kDa outer membrane protein that is conserved and plays an important role in Chlamydia abortus pathogenesis. We have identified an N-terminal fragment of Pmp18D (designated Pmp18.1) as a possible subunit vaccine antigen. In this study, we evaluated the vaccine potential of Pmp18.1 by investigating its ability to induce innate immune responses in dendritic cells and the signaling pathway(s) involved in rPmp18.1-induced IL-1β secretion. We next investigated the immunomodulatory impact of VCG, in comparison with the more established Th1-promoting adjuvants, CpG and FL, on rPmp18...
2017: Frontiers in Cellular and Infection Microbiology
Ana P Ferreira-Duarte, Anelize S Pinheiro-Torres, Gabriel F Anhê, Antônio Condino-Neto, Edson Antunes, Ivani A DeSouza
Staphylococcal enterotoxins are classified as superantigens that act by linking T-cell receptor with MHC class II molecules, which are expressed on classical antigen-presenting cells (APC). Evidence shows that MHC class II is also expressed in neutrophils and eosinophils. This study aimed to investigate the role of MHC class II and IFN-γ on chemotactic and adhesion properties of neutrophils and eosinophils after incubation with SEA. Bone marrow (BM) cells obtained from BALB/c mice were resuspended in culture medium, and incubated with SEA (3-30 ng/ml; 1-4 h), after which chemotaxis and adhesion were evaluated...
2017: Frontiers in Cellular and Infection Microbiology
Dawn L Taylor-Mulneix, Illiassou Hamidou Soumana, Bodo Linz, Eric T Harvill
The genus Bordetella comprises several bacterial species that colonize the respiratory tract of mammals. It includes B. pertussis, a human-restricted pathogen that is the causative agent of Whooping Cough. In contrast, the closely related species B. bronchiseptica colonizes a broad range of animals as well as immunocompromised humans. Recent metagenomic studies have identified known and novel bordetellae isolated from different environmental sources, providing a new perspective on their natural history. Using phylogenetic analysis, we have shown that human and animal pathogenic bordetellae have most likely evolved from ancestors that originated from soil and water...
2017: Frontiers in Cellular and Infection Microbiology
Jennifer L Johnson, Mahalakshmi Ramadass, Ariela Haimovich, Matthew D McGeough, Jinzhong Zhang, Hal M Hoffman, Sergio D Catz
Heterozygous mutations in the NLRP3 gene in patients with cryopyrin associated periodic syndrome (CAPS) lead to hyper-responsive inflammasome function. CAPS is a systemic auto-inflammatory syndrome characterized by the activation of the innate immune system induced by elevated pro-inflammatory cytokines, but the involvement of selective innate immune cells in this process is not fully understood. Neutrophil secretion and the toxic components of their granules are mediators of inflammation associated with several human diseases and inflammatory conditions...
2017: Frontiers in Cellular and Infection Microbiology
Ala E Tabor, Abid Ali, Gauhar Rehman, Gustavo Rocha Garcia, Amanda Fonseca Zangirolamo, Thiago Malardo, Nicholas N Jonsson
Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites), blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle...
2017: Frontiers in Cellular and Infection Microbiology
Ivona Pavkova, Monika Kopeckova, Jana Klimentova, Monika Schmidt, Valeria Sheshko, Margarita Sobol, Jitka Zakova, Pavel Hozak, Jiri Stulik
The DsbA homolog of Francisella tularensis was previously demonstrated to be required for intracellular replication and animal death. Disruption of the dsbA gene leads to a pleiotropic phenotype that could indirectly affect a number of different cellular pathways. To reveal the broad effects of DsbA, we compared fractions enriched in membrane proteins of the wild-type FSC200 strain with the dsbA deletion strain using a SILAC-based quantitative proteomic analysis. This analysis enabled identification of 63 proteins with significantly altered amounts in the dsbA mutant strain compared to the wild-type strain...
2017: Frontiers in Cellular and Infection Microbiology
Jennifer Kintner, Cheryl G Moore, Judy D Whittimore, Megan Butler, Jennifer V Hall
Chlamydia trachomatis infections represent the predominant cause of bacterial sexually transmitted infections. As an obligate intracellular bacterium, C. trachomatis is dependent on the host cell for survival, propagation, and transmission. Thus, factors that affect the host cell, including nutrition, cell cycle, and environmental signals, have the potential to impact chlamydial development. Previous studies have demonstrated that activation of Wnt/β-catenin signaling benefits C. trachomatis infections in fallopian tube epithelia...
2017: Frontiers in Cellular and Infection Microbiology
Ping Liu, Jinbiao Zhao, Pingting Guo, Wenqing Lu, Zhengying Geng, Crystal L Levesque, Lee J Johnston, Chunlin Wang, Ling Liu, Jie Zhang, Ning Ma, Shiyan Qiao, Xi Ma
Solid-state fermentation of feedstuffs by Bacillus subtilis MA139 can reduce insoluble dietary fiber content in vitro and improve growth performance in pigs. This study was conducted to investigate the effects of dietary corn bran (CB) fermented by B. subtilis on growth performance and gut microbiota composition in finishing pigs. A total of 60 finishing pigs were allocated to 3 dietary treatments consisting of a control (CON) diet, a 10% CB diet, and a 10% fermented CB (FCB) diet in a 21 d feeding trial. Growth performance and nutrient digestibility were evaluated...
2017: Frontiers in Cellular and Infection Microbiology
Susan R Brock, Michael J Parmely
Francisella tularensis has developed a number of effective evasion strategies to counteract host immune defenses, not the least of which is its ability to interact with the complement system to its own advantage. Following exposure of the bacterium to fresh human serum, complement is activated and C3b and iC3b can be found covalently attached to the bacterial surface. However, the lipopolysaccharide and capsule of the F. tularensis cell wall prevent complement-mediated lysis and endow the bacterium with serum resistance...
2017: Frontiers in Cellular and Infection Microbiology
Luïse Robbertse, Sabine A Richards, Christine Maritz-Olivier
The mechanisms underlying tick resistance within and between cattle breeds have been studied for decades. Several previous papers on bovine immune parameters contributing to tick resistance discussed findings across DNA, RNA, protein, cellular, and tissue levels. However, the differences between bovine host species, tick species and the experimental layouts were not always taken into account. This review aims to (a) give a comprehensive summary of studies investigating immune marker differences between cattle breeds with varying degrees of tick resistance, and (b) to integrate key findings and suggest hypotheses on likely immune-regulated pathways driving resistance...
2017: Frontiers in Cellular and Infection Microbiology
Ying Gong, Tao Li, Cuixiang Yu, Shujuan Sun
In recent decades, the incidence of invasive fungal infections has increased notably. Candida albicans (C. albicans), a common opportunistic fungal pathogen that dwells on human mucosal surfaces, can cause fungal infections, especially in immunocompromised and high-risk surgical patients. In addition, the wide use of antifungal agents has likely contributed to resistance of C. albicans to traditional antifungal drugs, increasing the difficulty of treatment. Thus, it is urgent to identify novel antifungal drugs to cope with C...
2017: Frontiers in Cellular and Infection Microbiology
Jeffrey M Grabowski, Catherine A Hill
Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research...
2017: Frontiers in Cellular and Infection Microbiology
Lucas Tirloni, Tae K Kim, Antônio F M Pinto, John R Yates, Itabajara da Silva Vaz, Albert Mulenga
Understanding the molecular basis of how ticks adapt to feed on different animal hosts is central to understanding tick and tick-borne disease (TBD) epidemiology. There is evidence that ticks differentially express specific sets of genes when stimulated to start feeding. This study was initiated to investigate if ticks such as Ixodes scapularis and Amblyomma americanum that are adapted to feed on multiple hosts utilized the same sets of proteins to prepare for feeding. We exposed I. scapularis and A. americanum to feeding stimuli of different hosts (rabbit, human, and dog) by keeping unfed adult ticks enclosed in a perforated microfuge in close contact with host skin, but not allowing ticks to attach on host...
2017: Frontiers in Cellular and Infection Microbiology
Ka Lip Chew, Raymond T P Lin, Jeanette W P Teo
Klebsiella pneumoniae remains a major pathogen responsible for localized infections such as cystitis and pneumonia, and disseminated infections that may result in severe sepsis and death. Invasive disease such as liver abscesses and endogenous endophthalmitis are associated with capsular serotypes K1 and K2. These infections require a prolonged course of antimicrobial treatment which has evolved over the years from inpatient treatment to outpatient parenteral antibiotic therapy. The emergence of plasmid-mediated resistance began with extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases...
2017: Frontiers in Cellular and Infection Microbiology
Rongsui Gao, Defeng Li, Yuan Lin, Jingxia Lin, Xiaoyun Xia, Hui Wang, Lijun Bi, Jun Zhu, Bachar Hassan, Shihua Wang, Youjun Feng
The structure of Vibrio cholerae FadR (VcFadR) complexed with the ligand oleoyl-CoA suggests an additional ligand-binding site. However, the fatty acid metabolism and its regulation is poorly addressed in Vibrio alginolyticus, a species closely-related to V. cholerae. Here, we show crystal structures of V. alginolyticus FadR (ValFadR) alone and its complex with the palmitoyl-CoA, a long-chain fatty acyl ligand different from the oleoyl-CoA occupied by VcFadR. Structural comparison indicates that both VcFadR and ValFadR consistently have an additional ligand-binding site (called site 2), which leads to more dramatic conformational-change of DNA-binding domain than that of the E...
2017: Frontiers in Cellular and Infection Microbiology
Genevieve Syn, Denise Anderson, Jenefer M Blackwell, Sarra E Jamieson
Upon invasion of host cells, the ubiquitous pathogen Toxoplasma gondii manipulates several host processes, including re-organization of host organelles, to create a replicative niche. Host mitochondrial association to T. gondii parasitophorous vacuoles is rapid and has roles in modulating host immune responses. Here gene expression profiling of T. gondii infected cells reveals enrichment of genes involved in oxidative phosphorylation (OXPHOS) and mitochondrial dysfunction 6 h post-infection. We identified 11 hub genes (HIF-1α, CASP8, FN1, POU5F1, CD44, ISG15, HNRNPA1, MDM2, RPL35, VHL, and NUPR1) and 10 predicted upstream regulators, including 4 endogenous regulators RICTOR, KDM5A, RB1, and D-glucose...
2017: Frontiers in Cellular and Infection Microbiology
Tiva T VanCleave, Amanda R Pulsifer, Michael G Connor, Jonathan M Warawa, Matthew B Lawrenz
The study of intracellular bacterial pathogens in cell culture hinges on inhibiting extracellular growth of the bacteria in cell culture media. Aminoglycosides, like gentamicin, were originally thought to poorly penetrate eukaryotic cells, and thus, while inhibiting extracellular bacteria, these antibiotics had limited effect on inhibiting the growth of intracellular bacteria. This property led to the development of the antibiotic protection assay to study intracellular pathogens in vitro. More recent studies have demonstrated that aminoglycosides slowly penetrate eukaryotic cells and can even reach intracellular concentrations that inhibit intracellular bacteria...
2017: Frontiers in Cellular and Infection Microbiology
Helena Honig Mondekova, Radek Sima, Veronika Urbanova, Vojtech Kovar, Ryan O M Rego, Libor Grubhoffer, Petr Kopacek, Ondrej Hajdusek
Ticks are important vectors of serious human and animal disease-causing organisms, but their innate immunity can fight invading pathogens and may have the ability to reduce or block transmission to mammalian hosts. Lectins, sugar-binding proteins, can distinguish between self and non-self-oligosaccharide motifs on pathogen surfaces. Although tick hemolymph possesses strong lectin activity, and several lectins have already been isolated and characterized, little is known about the implementation of these molecules in tick immunity...
2017: Frontiers in Cellular and Infection Microbiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"