Read by QxMD icon Read


Preeti Purwaha, Franklin Gu, Danthasinghe Waduge Badrajee Piyarathna, Theckelnaycke Rajendiran, Anindita Ravindran, Angela R Omilian, Sao Jiralerspong, Gokul Das, Carl Morrison, Christine Ambrosone, Cristian Coarfa, Nagireddy Putluri, Arun Sreekumar
The reprogramming of lipid metabolism is a hallmark of many cancers that has been shown to promote breast cancer progression. While several lipid signatures associated with breast cancer aggressiveness have been identified, a comprehensive lipidomic analysis specifically targeting the triple-negative subtype of breast cancer (TNBC) may be required to identify novel biomarkers and therapeutic targets for this most aggressive subtype of breast cancer that still lacks effective therapies. In this current study, our global LC-MS-based lipidomics platform was able to measure 684 named lipids across 15 lipid classes in 70 TNBC tumors...
July 13, 2018: Metabolites
Teresa W-M Fan, Salim S El-Amouri, Jessica K A Macedo, Qing Jun Wang, Huan Song, Teresa Cassel, Andrew N Lane
Conventional two-dimensional (2D) cell cultures are grown on rigid plastic substrates with unrealistic concentration gradients of O₂, nutrients, and treatment agents. More importantly, 2D cultures lack cell⁻cell and cell⁻extracellular matrix (ECM) interactions, which are critical for regulating cell behavior and functions. There are several three-dimensional (3D) cell culture systems such as Matrigel, hydrogels, micropatterned plates, and hanging drop that overcome these drawbacks but they suffer from technical challenges including long spheroid formation times, difficult handling for high throughput assays, and/or matrix contamination for metabolic studies...
July 10, 2018: Metabolites
Bertrand Rochat, Rayane Mohamed, Pierre-Edouard Sottas
Today’s high-resolution mass spectrometers (HRMS) allow bioanalysts to perform untargeted/global determinations that can reveal unexpected compounds or concentrations in a patient’s sample. This could be performed for preliminary diagnosis attempts when usual diagnostic processes and targeted determinations fail. We have evaluated an untargeted diagnostic screening (UDS) procedure. UDS is a metabolome analysis that compares one sample (e.g., a patient) with control samples (a healthy population)...
June 15, 2018: Metabolites
Garth L Maker, Tobias Green, Ian Mullaney, Robert D Trengove
Methamphetamine is an illicit psychostimulant drug that is linked to a number of diseases of the nervous system. The downstream biochemical effects of its primary mechanisms are not well understood, and the objective of this study was to investigate whether untargeted metabolomic analysis of an in vitro model could generate data relevant to what is already known about this drug. Rat B50 neuroblastoma cells were treated with 1 mM methamphetamine for 48 h, and both intracellular and extracellular metabolites were profiled using gas chromatography⁻mass spectrometry...
June 7, 2018: Metabolites
Morteza Abdoli, Murat Bozdag, Andrea Angeli, Claudiu T Supuran
A series of benzamides incorporating 4-sulfamoyl moieties were obtained by reacting 4-sulfamoyl benzoic acid with primary and secondary amines and amino acids. These sulfonamides were investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC The human (h) isoforms hCA II, VII, and IX were inhibited in the low nanomolar or subnanomolar ranges, whereas hCA I was slightly less sensitive to inhibition (KI s of 5.3⁻334 nM). The β- and γ-class CAs from pathogenic bacteria and fungi, such as Vibrio cholerae and Malassezia globosa , were inhibited in the micromolar range by the sulfonamides reported in the paper...
June 1, 2018: Metabolites
Niccolò Chiaramonte, Maria Novella Romanelli, Elisabetta Teodori, Claudiu T Supuran
Carbonic anhydrases (CAs) are a superfamily of metalloenzymes widespread in all life, classified into seven genetically different families (α⁻θ). These enzymes catalyse the reversible hydration of carbonic anhydride (CO₂), generating bicarbonate (HCO₃- ) and protons (H⁺). Fifteen isoforms of human CA (hCA I⁻XV) have been isolated, their presence being fundamental for the regulation of many physiological processes. In addition, overexpression of some isoforms has been associated with the outbreak or progression of several diseases...
May 24, 2018: Metabolites
Monica Bastawrous, Amy Jenne, Maryam Tabatabaei Anaraki, André J Simpson
Part review, part perspective, this article examines the applications and potential of in-vivo Nuclear Magnetic Resonance (NMR) for understanding environmental toxicity. In-vivo NMR can be applied in high field NMR spectrometers using either magic angle spinning based approaches, or flow systems. Solution-state NMR in combination with a flow system provides a low stress approach to monitor dissolved metabolites, while magic angle spinning NMR allows the detection of all components (solutions, gels and solids), albeit with additional stress caused by the rapid sample spinning...
May 24, 2018: Metabolites
Vera Kovacevic, André J Simpson, Myrna J Simpson
Organophosphate esters (OPEs) are frequently detected in aquatic environments. Hydrophobic OPEs with high octanol-water partition coefficients (Log KOW ) will likely sorb to dissolved organic matter (DOM) and consequently alter OPE bioavailability and sub-lethal toxicity. ¹H nuclear magnetic resonance (NMR)-based metabolomics was used to evaluate how DOM (5 mg organic carbon/L) alters the metabolic response of Daphnia magna exposed to sub-lethal concentrations of three individual OPEs with varying hydrophobicity...
May 19, 2018: Metabolites
Tobias B Alter, Lars M Blank, Birgitta E Ebert
To date, several independent methods and algorithms exist for exploiting constraint-based stoichiometric models to find metabolic engineering strategies that optimize microbial production performance. Optimization procedures based on metaheuristics facilitate a straightforward adaption and expansion of engineering objectives, as well as fitness functions, while being particularly suited for solving problems of high complexity. With the increasing interest in multi-scale models and a need for solving advanced engineering problems, we strive to advance genetic algorithms, which stand out due to their intuitive optimization principles and the proven usefulness in this field of research...
May 16, 2018: Metabolites
G A Nagana Gowda
Coenzymes of cellular redox reactions and cellular energy, as well as antioxidants mediate biochemical reactions fundamental to the functioning of all living cells. Conventional analysis methods lack the opportunity to evaluate these important redox and energy coenzymes and antioxidants in a single step. Major coenzymes include redox coenzymes: NAD⁺ (oxidized nicotinamide adenine dinucleotide), NADH (reduced nicotinamide adenine dinucleotide), NADP⁺ (oxidized nicotinamide adenine dinucleotide phosphate) and NADPH (reduced nicotinamide adenine dinucleotide phosphate); energy coenzymes: ATP (adenosine triphosphate), ADP (adenosine diphosphate) and AMP (adenosine monophosphate); and antioxidants: GSSG (oxidized glutathione) and GSH (reduced glutathione)...
May 14, 2018: Metabolites
Ivana Blaženović, Tobias Kind, Jian Ji, Oliver Fiehn
The annotation of small molecules remains a major challenge in untargeted mass spectrometry-based metabolomics. We here critically discuss structured elucidation approaches and software that are designed to help during the annotation of unknown compounds. Only by elucidating unknown metabolites first is it possible to biologically interpret complex systems, to map compounds to pathways and to create reliable predictive metabolic models for translational and clinical research. These strategies include the construction and quality of tandem mass spectral databases such as the coalition of MassBank repositories and investigations of MS/MS matching confidence...
May 10, 2018: Metabolites
Pollen K Yeung, Shyam Sundar Kolathuru, Sheyda Mohammadizadeh, Fatemeh Akhoundi, Brett Linderfield
The importance of adenosine and ATP in regulating many biological functions has long been recognized, especially for their effects on the cardiovascular system, which may be used for management of hypertension and cardiometabolic diseases. In response to ischemia and cardiovascular injury, ATP is broken down to release adenosine. The effect of adenosine is very short lived because it is rapidly taken up by erythrocytes (RBCs), myocardial and endothelial cells, and also rapidly catabolized to oxypurine metabolites...
May 2, 2018: Metabolites
Kevin Huynh, Gerard Pernes, Natalie A Mellett, Peter J Meikle, Andrew J Murphy, Graeme I Lancaster
Macrophages are abundant within adipose tissue depots where they are exposed to fatty acids, leading to lipid accumulation. Herein, we have determined the effects of various fatty acids on the macrophage lipidome. Using targeted mass-spectrometry, we were able to detect 641 individual lipid species in primary murine macrophages treated with a variety of saturated fatty acids and an un-saturated fatty acid, either alone or in combination. The most pronounced effects were observed for the long-chain saturated fatty acid palmitate, which increased the total abundance of numerous classes of lipids...
April 23, 2018: Metabolites
Ioannis Ilias, Sofia Apollonatou, Dimitra-Argyro Vassiliadi, Nikitas Nikitas, Maria Theodorakopoulou, Argyris Diamantakis, Anastasia Kotanidou, Ioanna Dimopoulou
No study has directly measured tissue lactate clearance in patients with sepsis during the post-resuscitation period. In this study we aimed to assess in ICU patients with sepsis ( n = 32) or septic shock ( n = 79)—during the post-resuscitation phase—the relative kinetics of blood/tissue lactate clearances and to examine whether these are associated with outcome. We measured serially—over a 48-h period—blood and adipose tissue interstitial fluid lactate levels (with microdialysis) and we calculated lactate clearance...
April 21, 2018: Metabolites
Tom F O'Callaghan, Rosa Vázquez-Fresno, Arnau Serra-Cayuela, Edison Dong, Rupasri Mandal, Deirdre Hennessy, Stephen McAuliffe, Pat Dillon, David S Wishart, Catherine Stanton, R Paul Ross
The purpose of this study was to examine the effects of two pasture feeding systems-perennial ryegrass (GRS) and perennial ryegrass and white clover (CLV)-and an indoor total mixed ration (TMR) system on the (a) rumen microbiome; (b) rumen fluid and milk metabolome; and (c) to assess the potential to distinguish milk from different feeding systems by their respective metabolomes. Rumen fluid was collected from nine rumen cannulated cows under the different feeding systems in early, mid and late lactation, and raw milk samples were collected from ten non-cannulated cows in mid-lactation from each of the feeding systems...
April 6, 2018: Metabolites
Alessia Trimigno, Linda Münger, Gianfranco Picone, Carola Freiburghaus, Grégory Pimentel, Nathalie Vionnet, François Pralong, Francesco Capozzi, René Badertscher, Guy Vergères
The identification and validation of food intake biomarkers (FIBs) in human biofluids is a key objective for the evaluation of dietary intake. We report here the analysis of the GC-MS and 1H-NMR metabolomes of serum samples from a randomized cross-over study in 11 healthy volunteers having consumed isocaloric amounts of milk, cheese, and a soy drink as non-dairy alternative. Serum was collected at baseline, postprandially up to 6 h, and 24 h after consumption. A multivariate analysis of the untargeted serum metabolomes, combined with a targeted analysis of candidate FIBs previously reported in urine samples from the same study, identified galactitol, galactonate, and galactono-1,5-lactone (milk), 3-phenyllactic acid (cheese), and pinitol (soy drink) as candidate FIBs for these products...
March 23, 2018: Metabolites
Claudiu T Supuran
Although the role of carbonic anhydrases (CAs, EC in metabolism is well-established, pharmacological applications of this phenomenon started to be considered only recently. In organisms all over the phylogenetic tree, the seven CA genetic families known to date are involved in biosynthetic processes and pH modulation, which may influence metabolism in multiple ways, with both processes being amenable to pharmacologic intervention. CA inhibitors possess antiobesity action directly by inhibiting lipogenesis, whereas the hypoxic tumor metabolism is highly controlled by the transmembrane isoforms CA IX and XII, which contribute to the acidic extracellular environment of tumors and supply bicarbonate for their high proliferation rates...
March 21, 2018: Metabolites
Morgan J Cichon, Nancy E Moran, Ken M Riedl, Steven J Schwartz, Steven K Clinton
The carotenoid lycopene is a bioactive component of tomatoes and is hypothesized to reduce risk of several chronic diseases, such as prostate cancer. The metabolism of lycopene is only beginning to be understood and some studies suggest that metabolites of lycopene may be partially responsible for bioactivity associated with the parent compound. The detection and characterization of these compounds in vivo is an important step in understanding lycopene bioactivity. The metabolism of lycopene likely involves both chemical and enzymatic oxidation...
March 20, 2018: Metabolites
Ana Rita Lima, Ana Margarida Araújo, Joana Pinto, Carmen Jerónimo, Rui Henrique, Maria de Lourdes Bastos, Márcia Carvalho, Paula Guedes de Pinho
Prostate cancer (PCa) is an important health problem worldwide. Diagnosis and management of PCa is very complex because the detection of serum prostate specific antigen (PSA) has several drawbacks. Metabolomics brings promise for cancer biomarker discovery and for better understanding PCa biochemistry. In this study, a gas chromatography-mass spectrometry (GC-MS) based metabolomic profiling of PCa cell lines was performed. The cell lines include 22RV1 and LNCaP from PCa with androgen receptor (AR) expression, DU145 and PC3 (which lack AR expression), and one normal prostate cell line (PNT2)...
March 19, 2018: Metabolites
Ashok Aspatwar, Susanna Haapanen, Seppo Parkkila
Carbonic anhydrases (CAs) are metalloenzymes that are omnipresent in nature. CAs catalyze the basic reaction of the reversible hydration of CO₂ to HCO₃- and H⁺ in all living organisms. Photosynthetic organisms contain six evolutionarily different classes of CAs, which are namely: α-CAs, β-CAs, γ-CAs, δ-CAs, ζ-CAs, and θ-CAs. Many of the photosynthetic organisms contain multiple isoforms of each CA family. The model alga Chlamydomonas reinhardtii contains 15 CAs belonging to three different CA gene families...
March 13, 2018: Metabolites
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"