Read by QxMD icon Read

Journal of Mathematical Neuroscience

Maria Luisa Saggio, Andreas Spiegler, Christophe Bernard, Viktor K Jirsa
Bursting is a phenomenon found in a variety of physical and biological systems. For example, in neuroscience, bursting is believed to play a key role in the way information is transferred in the nervous system. In this work, we propose a model that, appropriately tuned, can display several types of bursting behaviors. The model contains two subsystems acting at different time scales. For the fast subsystem we use the planar unfolding of a high codimension singularity. In its bifurcation diagram, we locate paths that underlie the right sequence of bifurcations necessary for bursting...
December 2017: Journal of Mathematical Neuroscience
Bjørn Fredrik Nielsen
Point neuron models with a Heaviside firing rate function can be ill-posed. That is, the initial-condition-to-solution map might become discontinuous in finite time. If a Lipschitz continuous but steep firing rate function is employed, then standard ODE theory implies that such models are well-posed and can thus, approximately, be solved with finite precision arithmetic. We investigate whether the solution of this well-posed model converges to a solution of the ill-posed limit problem as the steepness parameter of the firing rate function tends to infinity...
December 2017: Journal of Mathematical Neuroscience
Eva Lang, Wilhelm Stannat
Neural field equations are used to describe the spatio-temporal evolution of the activity in a network of synaptically coupled populations of neurons in the continuum limit. Their heuristic derivation involves two approximation steps. Under the assumption that each population in the network is large, the activity is described in terms of a population average. The discrete network is then approximated by a continuum. In this article we make the two approximation steps explicit. Extending a model by Bressloff and Newby, we describe the evolution of the activity in a discrete network of finite populations by a Markov chain...
December 2017: Journal of Mathematical Neuroscience
Arthur S Sherman, Joon Ha
Low frequency firing is modeled by Type 1 neurons with a SNIC, but, because of the vertical slope of the square-root-like f-I curve, low f only occurs over a narrow range of I. When an adaptive current is added, however, the f-I curve is linearized, and low f occurs robustly over a large I range. Ermentrout (Neural Comput. 10(7):1721-1729, 1998) showed that this feature of adaptation paradoxically arises from the SNIC that is responsible for the vertical slope. We show, using a simplified Hindmarsh-Rose neuron with negative feedback acting directly on the adaptation current, that whereas a SNIC contributes to linearization, in practice linearization over a large interval may require strong adaptation strength...
December 2017: Journal of Mathematical Neuroscience
Yangyang Wang, Jonathan E Rubin
Neural networks generate a variety of rhythmic activity patterns, often involving different timescales. One example arises in the respiratory network in the pre-Bötzinger complex of the mammalian brainstem, which can generate the eupneic rhythm associated with normal respiration as well as recurrent low-frequency, large-amplitude bursts associated with sighing. Two competing hypotheses have been proposed to explain sigh generation: the recruitment of a neuronal population distinct from the eupneic rhythm-generating subpopulation or the reconfiguration of activity within a single population...
December 2017: Journal of Mathematical Neuroscience
Lawrence C Udeigwe, Paul W Munro, G Bard Ermentrout
The Bienenstock-Cooper-Munro (BCM) learning rule provides a simple setup for synaptic modification that combines a Hebbian product rule with a homeostatic mechanism that keeps the weights bounded. The homeostatic part of the learning rule depends on the time average of the post-synaptic activity and provides a sliding threshold that distinguishes between increasing or decreasing weights. There are, thus, two essential time scales in the BCM rule: a homeostatic time scale, and a synaptic modification time scale...
December 2017: Journal of Mathematical Neuroscience
Jonathan Cannon, Paul Miller
Homeostatic processes that provide negative feedback to regulate neuronal firing rates are essential for normal brain function. Indeed, multiple parameters of individual neurons, including the scale of afferent synapse strengths and the densities of specific ion channels, have been observed to change on homeostatic time scales to oppose the effects of chronic changes in synaptic input. This raises the question of whether these processes are controlled by a single slow feedback variable or multiple slow variables...
December 2017: Journal of Mathematical Neuroscience
Aytül Gökçe, Daniele Avitabile, Stephen Coombes
Continuum neural field equations model the large-scale spatio-temporal dynamics of interacting neurons on a cortical surface. They have been extensively studied, both analytically and numerically, on bounded as well as unbounded domains. Neural field models do not require the specification of boundary conditions. Relatively little attention has been paid to the imposition of neural activity on the boundary, or to its role in inducing patterned states. Here we redress this imbalance by studying neural field models of Amari type (posed on one- and two-dimensional bounded domains) with Dirichlet boundary conditions...
October 26, 2017: Journal of Mathematical Neuroscience
Anirban Nandi, Heinz Schättler, Jason T Ritt, ShiNung Ching
No abstract text is available yet for this article.
October 11, 2017: Journal of Mathematical Neuroscience
Andrea K Barreiro, J Nathan Kutz, Eli Shlizerman
We examine a family of random firing-rate neural networks in which we enforce the neurobiological constraint of Dale's Law-each neuron makes either excitatory or inhibitory connections onto its post-synaptic targets. We find that this constrained system may be described as a perturbation from a system with nontrivial symmetries. We analyze the symmetric system using the tools of equivariant bifurcation theory and demonstrate that the symmetry-implied structures remain evident in the perturbed system. In comparison, spectral characteristics of the network coupling matrix are relatively uninformative about the behavior of the constrained system...
October 10, 2017: Journal of Mathematical Neuroscience
Mayte Bonilla-Quintana, Kyle C A Wedgwood, Reuben D O'Dea, Stephen Coombes
Layer II stellate cells in the medial enthorinal cortex (MEC) express hyperpolarisation-activated cyclic-nucleotide-gated (HCN) channels that allow for rebound spiking via an [Formula: see text] current in response to hyperpolarising synaptic input. A computational modelling study by Hasselmo (Philos. Trans. R. Soc. Lond. B, Biol. Sci. 369:20120523, 2013) showed that an inhibitory network of such cells can support periodic travelling waves with a period that is controlled by the dynamics of the [Formula: see text] current...
August 25, 2017: Journal of Mathematical Neuroscience
Markus Ableidinger, Evelyn Buckwar, Harald Hinterleitner
Neural mass models provide a useful framework for modelling mesoscopic neural dynamics and in this article we consider the Jansen and Rit neural mass model (JR-NMM). We formulate a stochastic version of it which arises by incorporating random input and has the structure of a damped stochastic Hamiltonian system with nonlinear displacement. We then investigate path properties and moment bounds of the model. Moreover, we study the asymptotic behaviour of the model and provide long-time stability results by establishing the geometric ergodicity of the system, which means that the system-independently of the initial values-always converges to an invariant measure...
August 8, 2017: Journal of Mathematical Neuroscience
Aurélie Garnier, Alexandre Vidal, Habib Benali
Recent experimental evidence on the clustering of glutamate and GABA transporters on astrocytic processes surrounding synaptic terminals pose the question of the functional relevance of the astrocytes in the regulation of neural activity. In this perspective, we introduce a new computational model that embeds recent findings on neuron-astrocyte coupling at the mesoscopic scale intra- and inter-layer local neural circuits. The model consists of a mass model for the neural compartment and an astrocyte compartment which controls dynamics of extracellular glutamate and GABA concentrations...
December 2016: Journal of Mathematical Neuroscience
Benjamin L Schwartz, Munish Chauhan, Rosalind J Sadleir
Presented here is a model of neural tissue in a conductive medium stimulated by externally injected currents. The tissue is described as a conductively isotropic bidomain, i.e. comprised of intra and extracellular regions that occupy the same space, as well as the membrane that divides them, and the injection currents are described as a pair of source and sink points. The problem is solved in three spatial dimensions and defined in spherical coordinates [Formula: see text]. The system of coupled partial differential equations is solved by recasting the problem to be in terms of the membrane and a monodomain, interpreted as a weighted average of the intra and extracellular domains...
December 2016: Journal of Mathematical Neuroscience
Kang Li, Claus Bundesen, Susanne Ditlevsen
A fundamental question concerning the way the visual world is represented in our brain is how a cortical cell responds when its classical receptive field contains a plurality of stimuli. Two opposing models have been proposed. In the response-averaging model, the neuron responds with a weighted average of all individual stimuli. By contrast, in the probability-mixing model, the cell responds to a plurality of stimuli as if only one of the stimuli were present. Here we apply the probability-mixing and the response-averaging model to leaky integrate-and-fire neurons, to describe neuronal behavior based on observed spike trains...
December 2016: Journal of Mathematical Neuroscience
Bjørn Fredrik Nielsen, John Wyller
We show that point-neuron models with a Heaviside firing rate function can be ill posed. More specifically, the initial-condition-to-solution map might become discontinuous in finite time. Consequently, if finite precision arithmetic is used, then it is virtually impossible to guarantee the accurate numerical solution of such models. If a smooth firing rate function is employed, then standard ODE theory implies that point-neuron models are well posed. Nevertheless, in the steep firing rate regime, the problem may become close to ill posed, and the error amplification, in finite time, can be very large...
December 2016: Journal of Mathematical Neuroscience
Nicole Massarelli, Geoffrey Clapp, Kathleen Hoffman, Tim Kiemel
Sensory input to the lamprey central pattern generator (CPG) for locomotion is known to have a significant role in modulating lamprey swimming. Lamprey CPGs are known to have the ability to entrain to a bending stimulus, that is, in the presence of a rhythmic signal, the CPG will change its frequency to match the stimulus frequency. Bending experiments in which the lamprey spinal cord has been removed and mechanically bent back and forth at a single point have been used to determine the range of frequencies that can entrain the CPG rhythm...
December 2016: Journal of Mathematical Neuroscience
Bastien Fernandez, Stanislav M Mintchev
We investigate the dynamics of unidirectional semi-infinite chains of type-I oscillators that are periodically forced at their root node, as an archetype of wave generation in neural networks. In previous studies, numerical simulations based on uniform forcing have revealed that trajectories approach a traveling wave in the far-downstream, large time limit. While this phenomenon seems typical, it is hardly anticipated because the system does not exhibit any of the crucial properties employed in available proofs of existence of traveling waves in lattice dynamical systems...
December 2016: Journal of Mathematical Neuroscience
Paul C Bressloff, Bard Ermentrout, Olivier Faugeras, Peter J Thomas
Jack Cowan's remarkable career has spanned, and molded, the development of neuroscience as a quantitative and mathematical discipline combining deep theoretical contributions, rigorous mathematical work and groundbreaking biological insights. The Banff International Research Station hosted a workshop in his honor, on Stochastic Network Models of Neocortex, July 17-24, 2014. This accompanying Festschrift celebrates Cowan's contributions by assembling current research in stochastic phenomena in neural networks...
December 2016: Journal of Mathematical Neuroscience
Rüdiger Thul, Stephen Coombes, Carlo R Laing
The original neural field model of Wilson and Cowan is often interpreted as the averaged behaviour of a network of switch like neural elements with a distribution of switch thresholds, giving rise to the classic sigmoidal population firing-rate function so prevalent in large scale neuronal modelling. In this paper we explore the effects of such threshold noise without recourse to averaging and show that spatial correlations can have a strong effect on the behaviour of waves and patterns in continuum models...
December 2016: Journal of Mathematical Neuroscience
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"