Read by QxMD icon Read


Azaam M Samad
No abstract text is available yet for this article.
October 2016: Adipocyte
Masashi Satoh, Kazuya Iwabuchi
Adipose tissue contains various types of immunocompetent cells, and these cells of innate and adaptive immunity control adipose tissue inflammation that blunts insulin sensitivity. Recent studies have shown that adipocytes express CD1d and present lipid antigen(s) to activate natural killer T (NKT) cells. The function of adipocytes is in turn modulated by cytokines that NKT cells produce to alter the expression of anti-inflammatory adipokine(s) and the production of inflammatory and chemoattractant cytokines...
October 2016: Adipocyte
Manoj Kumar Gunasekaran, Anne-Laurence Virama-Latchoumy, Anne-Claire Girard, Cynthia Planesse, Alexis Guérin-Dubourg, Lars Ottosson, Ulf Andersson, Maya Césari, Régis Roche, Laurence Hoareau
Chronic low grade inflammation is one of the major metabolic disorders in case of obesity and associated pathologies. By its important secretion function, the role of adipose tissue in this metabolic low grade inflammation is well known. Recently, it was demonstrated that the alarmin high mobility group box protein 1 (HMGB1) is involved in obesity-related pathologies by its increased serum levels in obese compared to normal weight individuals, and by its pro-inflammatory effects. However, the role of HMGB1 on adipocytes inflammation is poorly documented and we propose to investigate this point...
October 2016: Adipocyte
Jayakumar Perumal, Sandhya Sriram, Hann Qian Lim, Malini Olivo, Shigeki Sugii
Retinoic acid (RA) is essential for early developmental processes and stem cell differentiation, but less is known about its contributions to adult tissues and stem cells including adipose tissue. We previously demonstrated that many genes involved in RA synthesis and downstream pathway are differentially expressed in adipose-derived stem cells (ASCs) from visceral fat compared to those from subcutaneous fat, leading to changes in their early adipogenic functions. In order to study potential contributions of RA in adipose tissue, we measured tissue RA levels using a technique based on surface-enhanced Raman spectroscopy (SERS)...
October 2016: Adipocyte
Katsura Niijima, Yoko Shimoda, Tsugumichi Saito, Eijiro Yamada, Yawara Niijima, Shuichi Okada, Masanobu Yamada
To assess whether there is any clinical significance for determining the normal range of subcutaneous abdominal fat area, we compared fat area with insulin sensitivity. Visceral and subcutaneous abdominal fat area the L4-L5 thoracic level was determined by computed tomography (CT). Plasma glucose and insulin levels were determined after an overnight fast and calculated by the homeostatic model assessment of insulin resistance (HOMA-IR). We analyzed 350 (180 male and 170 female) subjects whose BMI was 18.5≤BMI<25...
October 2016: Adipocyte
Yan Zhang, Mikhail G Kolonin
Adipocyte progenitors, known as adipose stromal cells (ASC), can become mobilized, recruited by tumors, and contribute to cancer progression. Mechanisms underlying ASC trafficking have remained obscure. We recently reported that CXCL1 expressed by cancer cells chemoattracts ASC expressing CXCR1 in obesity. As a candidate mechanism of CXCL1 activation, we identified interleukin (IL)-22, systemic circulation of which is increased in obesity. It has been reported that IL-22 signaling through IL-22R is upstream of CXCL1...
October 2016: Adipocyte
Emilia Heimann, Margareta Nyman, Ann-Ki Pålbrink, Karin Lindkvist-Petersson, Eva Degerman
Short-chain fatty acids (SCFAs), e.g. acetic acid, propionic acid and butyric acid, generated through colonic fermentation of dietary fibers, have been shown to reach the systemic circulation at micromolar concentrations. Moreover, SCFAs have been conferred anti-obesity properties in both animal models and human subjects. Branched SCFAs (BSCFAs), e.g., isobutyric and isovaleric acid, are generated by fermentation of branched amino acids, generated from undigested protein reaching colon. However, BSCFAs have been sparsely investigated when referring to effects on energy metabolism...
October 2016: Adipocyte
Nils A Kraus, Franziska Ehebauer, Benedikt Zapp, Bianca Rudolphi, Bettina J Kraus, Daniel Kraus
Adipocyte cell culture is an important tool for mechanistic studies of energy metabolism. Many factors affect the differentiation of adipocytes in culture. Oil red O staining can be used to assess the degree of differentiation. However, the validity of this method for quantitative analysis has not yet been established. Here we show that a protocol with arbitrarily chosen parameters does not measure in the linear range and is not suitable for quantitative analysis (R(2) = 0.077, p = 0.382), and develop and validate an optimized protocol for quantitative oil red O staining of cultured adipocytes...
October 2016: Adipocyte
Steven L Shipp, Mark A Cline, Elizabeth R Gilbert
Communication between the brain and the adipose tissue has been the focus of many studies in recent years, with the "brain-fat axis" identified as a system that orchestrates the assimilation and usage of energy to maintain body mass and adequate fat stores. It is now well-known that appetite-regulating peptides that were studied as neurotransmitters in the central nervous system can act both on the hypothalamus to regulate feeding behavior and also on the adipose tissue to modulate the storage of energy. Energy balance is thus partly controlled by factors that can alter both energy intake and storage/expenditure...
October 2016: Adipocyte
Mikael Rydén
In the last decade, results in both animal models and humans have demonstrated that white adipocytes are generated over the entire life-span. This adds to the plasticity of adipose tissue and alterations in adipocyte turnover are linked to metabolic dysfunction. Adipocytes are derived from precursors present primarily in the perivascular areas of adipose tissue but their precise origin remains unclear. The multipotent differentiation capacity of bone marrow-derived cells (BMDC) has prompted the suggestion that BMDC may contribute to different cell tissue pools, including adipocytes...
July 2016: Adipocyte
Azaam M Samad
No abstract text is available yet for this article.
July 2016: Adipocyte
Yuyan Chen, Sarah Frost, Jennifer A Byrne
Lipid droplets are essential for both the storage and retrieval of excess cellular nutrients, and their biology is regulated by a diverse range of cellular proteins, some of which function at the lipid droplet. Numerous studies have characterized lipid droplet proteomes in different organisms and cell types, and RNAi whole genome screening studies have examined the genetic regulation of lipid storage in C. elegans and D. melanogaster. While tumor protein D52 (TPD52) did not emerge from earlier studies as a strong candidate, exogenous expression of human TPD52 in cultured cells resulted in significantly increased numbers of lipid droplets, and oleic acid supplementation increased TPD52 detection at both lipid droplets and the Golgi apparatus...
July 2016: Adipocyte
Ismael Valladolid-Acebes, Teresa Daraio, Kerstin Brismar, Tomas Hökfelt, Christina Bark
The exocytosis of signaling molecules from neuronal, neuroendocrine and endocrine cells is regulated by membrane fusion involving SNAP-25 and associated SNARE proteins. The importance of this process for metabolic control recently became evident by studies of mouse mutants genetically engineered to only express one of 2 closely related, alternatively-spliced variants of SNAP-25. The results showed that even minor differences in the function of proteins regulating exocytosis are sufficient to provoke metabolic disease, including hyperglycaemia, liver steatosis, adipocyte hypertrophy and obesity...
July 2016: Adipocyte
Vaibhav B Patel, Ratnadeep Basu, Gavin Y Oudit
Obesity is characterized by an excessive fat accumulation in adipose tissues leading to weight gain and is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; activated RAS and angiotensin (Ang) II production results in worsening of cardiovascular diseases and angiotensin converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. ACE2 is expressed in the adipocytes and its expression is upregulated in response to high fat diet induced obesity in mice...
July 2016: Adipocyte
Tania Quesada-López, Laura González-Dávalos, Enrique Piña, Ofelia Mora
Adipose Tissue (AT) is a complex organ with a crucial regulatory role in energy metabolism and in the development of obesity and the Metabolic Syndrome (MS). Modified responses and the metabolism of hormones have been observed in visceral adiposity during obesity, specifically as related with cortisone. The objective of this study was to assess, in the 3T3-L1 adipocyte cell line, the short-term effect of cortisone on the expression of 11β-Hydroxysteroid dehydrogenase 1 (Hsd1), which is responsible for activation of cortisone into cortisol, and for Aquaporin 7 (Aqp7), involved in glycerol transport through the cell membrane...
July 2016: Adipocyte
Denise Rockstroh, Dennis Löffler, Wieland Kiess, Kathrin Landgraf, Antje Körner
MicroRNAs (miRNAs) are non-coding RNAs that regulate target gene expression at the post-transcriptional level and are supposed to be implicated in the control of adipogenesis. We aimed to identify miRNAs which are involved in the regulation of human adipogenesis and searched for their molecular targets. Applying microarray-analysis we identified miR125b-5p as upregulated during human adipocyte differentiation, although its role during adipogenesis is unknown. We identified and characterized the matrix metalloproteinase 11 (MMP11) as a direct target of miR125b-5p by showing that miR125b-5p overexpression significantly reduces MMP11 luciferase activity and mutation of any single binding site was sufficient to abolish the miR125b-5p mediated inhibition of luciferase activity...
July 2016: Adipocyte
Marwa Chehimi, Maud Robert, Michel El Bechwaty, Guillaume Vial, Jennifer Rieusset, Hubert Vidal, Luciano Pirola, Assia Eljaafari
Recently, we have reported that adipose tissue-derived stem cells (ASC) harvested from obese donors induce a pro-inflammatory environment when co-cultured with peripheral blood mononuclear cells (MNC), with a polarization of T cells toward the Th17 cell lineage, increased secretion of IL-1β and IL-6 pro-inflammatory cytokines, and down-regulation of Th1 cytokines, such as IFNγ and TNFα. However, whether differentiated adipocytes, like the aforementioned ASC, are pro-inflammatory in obese subject AT remained to be investigated...
July 2016: Adipocyte
Lan Shao, Boya Feng, Yuying Zhang, Huanjiao Zhou, Weidong Ji, Wang Min
Adipose tissue dysfunction correlates with the development of diabetes. Mice with an adipocyte-specific deletion of the SUMO-specific protease SENP1 develop symptoms of type-1 diabetes mellitus (T1DM). Peri-pancreatic adipocytes (PATs) exert both systemic and paracrine effects on pancreases function. Our recent studies report that PATs of SENP1-deficient mice have increased proinflammatory cytokine production compared with other adipose depots. Proinflammatory cytokines produced from PATs not only have direct cytotoxic effects on pancreatic islets, but also increase CCL5 expression in adjacent pancreatic islets, which induces persistent inflammation in pancreases by acquisition of Th1 and Th17 effector T cell subsets...
July 2016: Adipocyte
Erica L Scheller, Aaron A Burr, Ormond A MacDougald, William P Cawthorn
The adipocyte-derived hormone adiponectin mediates beneficial cardiometabolic effects, and hypoadiponectinemia is a biomarker for increased metabolic and cardiovascular risk. Indeed, circulating adiponectin decreases in obesity and insulin-resistance, likely because of impaired production from white adipose tissue (WAT). Conversely, lean states such as caloric restriction (CR) are characterized by hyperadiponectinemia, even without increased adiponectin production from WAT. The reasons underlying this paradox have remained elusive, but our recent research suggests that CR-associated hyperadiponectinemia derives from an unexpected source: bone marrow adipose tissue (MAT)...
July 2016: Adipocyte
Yifei Miao, Margaret Warner, Jan-Ke Gustafsson
The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type II diabetes. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride and glucose metabolism. Following our previous finding that LXRs serve as repressors of UCP1 in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet...
April 2016: Adipocyte
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"