Read by QxMD icon Read

Nucleic Acid Therapeutics

Jeremiah D Farelli, Kirtika H Asrani, Cleo Isaacs, Joanna S deBear, Mary R Stahley, Anumeha Shah, Melissa A Lasaro, Christopher J Cheng, Romesh R Subramanian
Messenger RNA (mRNA) is a promising new class of therapeutics that has potential for treatment of diseases in fields such as immunology, oncology, vaccines, and inborn errors of metabolism. mRNA therapy has several advantages over DNA-based gene therapy, including the lack of the need for nuclear import and transcription, as well as limited possibility of genomic integration. One drawback of mRNA therapy, especially in cases such as metabolic disorders where repeated dosing will be necessary, is the relatively short in vivo half-life of mRNA (∼6-12 h)...
February 13, 2018: Nucleic Acid Therapeutics
Colton M Miller, W Brad Wan, Punit P Seth, Edward N Harris
Second-generation (Gen 2) Antisense oligonucleotides (ASOs) show increased nuclease stability and affinity for their RNA targets, which has translated to improved potency and therapeutic index in the clinic. Gen 2 ASOs are typically modified using the phosphorothioate (PS) backbone modification, which enhances ASO interactions with plasma, cell surface, and intracellular proteins. This facilitates ASO distribution to peripheral tissues and also promotes cellular uptake after injection into animals. Previous work identified that Stabilin receptors specifically internalize PS-ASOs in the sinusoidal endothelial cells of the liver and the spleen...
February 13, 2018: Nucleic Acid Therapeutics
Diana Gabriela Valencia-Reséndiz, Giovanni Palomino-Vizcaino, Juana Virginia Tapia-Vieyra, María Luisa Benítez-Hess, Ana Gabriela Leija-Montoya, Luis Marat Alvarez-Salas
Human papillomavirus type 16 (HPV16) DNA has been found in ∼50% of cervical tumors worldwide. HPV infection starts with the binding of the virus capsid to heparan sulfate (HS) receptors exposed on the surface of epithelial basal layer keratinocytes. Previously, our group isolated a high-affinity RNA aptamer (Sc5c3) specific for HPV16 L1 virus-like particles (VLPs). In this study, we report the inhibition of HPV16 infection by Sc5c3 in a pseudovirus (PsVs) model. 293TT cells were infected by HPV16 PsVs containing the yellow fluorescent protein (YFP) as reporter gene...
February 13, 2018: Nucleic Acid Therapeutics
Colton M Miller, Michael Tanowitz, Aaron J Donner, Thazha P Prakash, Eric E Swayze, Edward N Harris, Punit P Seth
Oligonucleotide therapeutics have emerged as a third distinct platform for drug discovery within the pharmaceutical industry. Five oligonucleotide-based drugs have been approved by the US FDA and over 100 oligonucleotides drugs are currently at different stages of human trials. Several of these oligonucleotide drugs are modified using the phosphorothioate (PS) backbone modification where one of the nonbridging oxygen atoms of the phosphodiester linkage is replaced with sulfur. In this review, we summarize our knowledge on receptor-mediated uptake of PS antisense oligonucleotides (ASOs) within different cell types of the liver-a privileged organ for the discovery of oligonucleotide-based therapeutics...
February 9, 2018: Nucleic Acid Therapeutics
Liande Li, Xiulong Shen, Zhongtian Liu, Michaela Norrbom, Thazha P Prakash, Daniel O'Reilly, Vivek K Sharma, Masad J Damha, Jonathan K Watts, Frank Rigo, David R Corey
Friedreich's Ataxia (FA) is an inherited neurologic disorder caused by an expanded GAA repeat within intron 1 of the frataxin (FXN) gene that reduces expression of FXN protein. Agents that increase expression of FXN have the potential to alleviate the disease. We previously reported that duplex RNAs (dsRNAs) and antisense oligonucleotides (ASOs) complementary to the GAA repeat could enhance expression of FXN protein. We now explore the potential of a diverse group of chemically modified dsRNAs and ASOs to define the breadth of repeat-targeted synthetic nucleic acids as a platform for therapeutic development for FA...
January 17, 2018: Nucleic Acid Therapeutics
Fumito Wada, Tsuyoshi Yamamoto, Tetsuya Ueda, Motoki Sawamura, Shunsuke Wada, Mariko Harada-Shiba, Satoshi Obika
Recently, some studies have reported nephrotoxicity associated with a certain class of antisense oligonucleotides (ASOs) in humans. One possibility for reducing the potential nephrotoxicity of ASOs is to alter their pharmacokinetics. In this study, we investigated the effect of a ligand conjugation strategy on the renal accumulation of ASOs. We selected two ligands, cholesterol and N-acetylgalactosamine (GalNAc), with the purpose of reducing renal distribution and liver targeting, and then designed a series of cholesterol-GalNAc dual conjugated ASOs...
February 2018: Nucleic Acid Therapeutics
Danielle Vlaho, Johans F Fakhoury, Masad J Damha
A series of siRNA duplexes containing cationic non-bridging 3',5'-linked phosphoramidate (PN) linkages was designed and synthesized using a combination of phosphoramidite and H-phosphonate chemistries. Modified oligonucleotides were assayed for their thermal stability, helical structure, and ability to modulate the expression of firefly luciferase. We demonstrate that PN modifications of siRNAs are, in general, minimally destabilizing with respect to duplex thermal stability; destabilization can be mitigated through the incorporation of 2'-modified RNA-like residues or PN conjugates containing ionizable pendant moieties...
February 2018: Nucleic Acid Therapeutics
Yanghee Kim, Young Gyu Kang, Jeong Yong Choe, Dooyoung Lee, Chanseok Shin, Sun Woo Hong, Dong-Ki Lee
Specific gene silencing through RNA interference (RNAi) holds great promise as the next-generation therapeutic development platform. Previously, we have shown that branched, tripodal interfering RNA (tiRNA) structures could simultaneously trigger RNAi-mediated gene silencing of three target genes with 38 nt-long guide strands associated with Argonaute 2. Herein, we show that the branched RNA structure can trigger effective gene silencing in Dicer knockout cell line, demonstrating that the Dicer-mediated processing is not required for tiRNA activity...
February 2018: Nucleic Acid Therapeutics
Stanley T Crooke, Brenda F Baker, Nguyen C Pham, Steven G Hughes, T Jesse Kwoh, Danlin Cai, Sotirios Tsimikas, Richard S Geary, Sanjay Bhanot
Systemically administered 2'-O-methoxyethyl (2'MOE) antisense oligonucleotides (ASOs) accumulate in the kidney and metabolites are cleared in urine. The effects of eleven 2'MOE ASOs on renal function were assessed in 2,435 patients from 32 phase 2 and phase 3 trials. The principle analysis was on data from 28 randomized placebo-controlled trials. Mean levels of renal parameters remained within normal ranges over time across dose groups. Patient-level meta-analyses demonstrated a significant difference between placebo-treated and 2'MOE ASO-treated patients at doses >175 mg/week in the percentage and absolute change from baseline for serum creatinine and estimated glomerular filtration rate...
February 2018: Nucleic Acid Therapeutics
Daniel Capaldi, Andy Teasdale, Scott Henry, Nadim Akhtar, Cathaline den Besten, Samantha Gao-Sheridan, Matthias Kretschmer, Neal Sharpe, Ben Andrews, Brigitte Burm, Jeffrey Foy
This white paper, which is the 10th in a series intended to address issues associated with the development of therapeutic oligonucleotides, examines the subject of product-related impurities. The authors consider chemistry and safety aspects and advance arguments in favor of platform approaches to impurity identification and qualification. Reporting, identification, and qualification thresholds suitable for product-related impurities of therapeutic oligonucleotides are proposed.
December 2017: Nucleic Acid Therapeutics
Shirley H Purvis, Jeffrey R Keefer, Yolanda M Fortenberry, Emily A Barron-Casella, James F Casella
The pathophysiology of sickle cell disease (SCD) is dependent on the polymerization of deoxygenated sickle hemoglobin (HbS), leading to erythrocyte deformation (sickling) and vaso-occlusion within the microvasculature. Following deoxygenation, there is a delay time before polymerization is initiated, during which nucleation of HbS monomers occurs. An agent with the ability to extend this delay time or slow polymerization would therefore hold a therapeutic, possibly curative, potential. We used the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method to screen for HbS-binding RNA aptamers modified with nuclease-resistant 2'-fluoropyrimidines...
December 2017: Nucleic Acid Therapeutics
Bruno M D C Godinho, James W Gilbert, Reka A Haraszti, Andrew H Coles, Annabelle Biscans, Loic Roux, Mehran Nikan, Dimas Echeverria, Matthew Hassler, Anastasia Khvorova
Therapeutic oligonucleotides, such as small interfering RNAs (siRNAs), hold great promise for the treatment of incurable genetically defined disorders by targeting cognate toxic gene products for degradation. To achieve meaningful tissue distribution and efficacy in vivo, siRNAs must be conjugated or formulated. Clear understanding of the pharmacokinetic (PK)/pharmacodynamic behavior of these compounds is necessary to optimize and characterize the performance of therapeutic oligonucleotides in vivo. In this study, we describe a simple and reproducible methodology for the evaluation of in vivo blood/plasma PK profiles and tissue distribution of oligonucleotides...
December 2017: Nucleic Acid Therapeutics
Nobuhiko Sugito, Kohei Taniguchi, Yuki Kuranaga, Maki Ohishi, Tomoyoshi Soga, Yuko Ito, Mitsuru Miyachi, Ken Kikuchi, Hajime Hosoi, Yukihiro Akao
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma and is most frequently found in children. In RMS, there are two major subtypes, that is, embryonal RMS and alveolar RMS (ARMS). ARMS has exclusively the worse prognosis and is caused by formation of the chimeric PAX3-FOXO1 gene. Regarding cancer, the Warburg effect is known as a feature of cancer-specific metabolism. Polypyrimidine tract-binding protein 1 (PTBP1), a splicer of pyruvate kinase muscle (PKM) mRNA, is a positive regulator of cancer-specific energy metabolism...
December 2017: Nucleic Acid Therapeutics
Shashi Gupta, Daniel W Drolet, Steven K Wolk, Sheela M Waugh, John C Rohloff, Jeffery D Carter, Wesley S Mayfield, Matthew R Otis, Catherine R Fowler, Tomoki Suzuki, Masao Hirota, Yuichi Ishikawa, Daniel J Schneider, Nebojsa Janjic
The addition of novel side chains at the 5-position of uracil is an effective means to increase chemical diversity of aptamers and hence the success rate for discovery of high-affinity ligands to protein targets. Such modifications also increase nuclease resistance, which is useful in a range of applications, especially for therapeutics. In this study, we assess the impact of these side chains on plasma pharmacokinetics of modified aptamers conjugated to a 40 kDa polyethylene glycol. We show that clearance from plasma depends on relative hydrophobicity: side chains with a negative cLogP (more hydrophilic) result in slower plasma clearance compared with side chains with a positive cLogP (more hydrophobic)...
December 2017: Nucleic Acid Therapeutics
Christina Kratschmer, Matthew Levy
There is increasing interest in the use of aptamers for the development of therapeutics. However, as oligonucleotides, aptamers are susceptible to nuclease degradation; poor serum stability is likely to negatively affect in vivo function. Modified nucleotides have been used to thwart nuclease degradation. However, few studies report the serum stability of selected aptamers. In this study, we examined the effect of various chemical modifications (2'-deoxy, 2'-hydroxyl, 2'-fluoro, and 2'-O-methyl) on the stability of a control oligonucleotide sequence following incubation in frozen human, fresh mouse, and fresh human serum...
December 2017: Nucleic Acid Therapeutics
Shruti Sasaki, Shuling Guo
Nucleic acid therapeutics are an established class of drugs that enable specific targeting of a gene of interest. This diverse family of drugs includes antisense oligonucleotides, siRNAs, and mRNA replacement therapies, which can elicit both gene repression and activation, primarily at the RNA level. Recent advances in medicinal chemistry have increased drug potency and enhanced delivery and distribution to a broad array of tissue and cell types. A key advantage of nucleic acid therapeutics is in their application to monogenic diseases...
November 21, 2017: Nucleic Acid Therapeutics
Jonathan C Hagopian, Alexander S Hamil, Arjen van den Berg, Bryan R Meade, Akiko Eguchi, Caroline Palm-Apergi, Steven F Dowdy
Small double-stranded, left-handed hairpin (LHP) RNAs containing a 5'-guide-loop-passenger-3' structure induce RNAi responses by a poorly understood mechanism. To explore LHPs, we synthesized fully 2'-modified LHP RNAs targeting multiple genes and found all to induce robust RNAi responses. Deletion of the loop and nucleotides at the 5'-end of the equivalent passenger strand resulted in a smaller LHP that still induced strong RNAi responses. Surprisingly, progressive deletion of up to 10 nucleotides from the 3'-end of the guide strand resulted in a 32mer LHP capable of inducing robust RNAi responses...
October 2017: Nucleic Acid Therapeutics
Jumpei Ariyoshi, Yohei Matsuyama, Akio Kobori, Akira Murakami, Hiroshi Sugiyama, Asako Yamayoshi
MicroRNAs (miRNAs) regulate gene expression by forming RNA-induced silencing complexes (RISCs) and have been considered as promising therapeutic targets. MiRNA is an essential component of RISC for the modulation of gene expression. Therefore, the release of miRNA from RISC is considered as an effective method for the inhibition of miRNA functions. In our previous study, we reported that anti-miRNA oligonucleotides (AMOs), which are composed of the 2'-O-methyl (2'-OMe) RNA, could induce the release of miRNA from RISC...
October 2017: Nucleic Acid Therapeutics
Rosie Z Yu, Rudy Gunawan, Richard S Geary, Steven G Hughes, Scott P Henry, Yanfeng Wang
The potential of QT prolongation of ten 2'-O-methoxyethyl-modified (2'-MOE) antisense oligonucleotides (ASOs) was evaluated retrospectively via exposure/response (ER) analysis using data from Phase 1 clinical studies in healthy subjects. All Phase 1 studies were double-blind, placebo-controlled, single and multiple ascending dose studies designed to assess the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics of the ASOs in healthy subjects. The active doses in these studies ranged from 50 to 450 mg administered by subcutaneous (SC) injection in single and multiple ascending dose cohorts...
October 2017: Nucleic Acid Therapeutics
Annemieke Aartsma-Rus, Volker Straub, Robert Hemmings, Manuel Haas, Gabriele Schlosser-Weber, Violeta Stoyanova-Beninska, Eugenio Mercuri, Francesco Muntoni, Bruno Sepodes, Elizabeth Vroom, Pavel Balabanov
Duchenne muscular dystrophy (DMD) is a rare, severe, progressive muscle-wasting disease leading to disability and premature death. Patients lack the muscle membrane-stabilizing protein dystrophin. Antisense oligonucleotide (AON)-mediated exon skipping is a therapeutic approach that aims to induce production of partially functional dystrophins. Recently, an AON targeting exon 51 became the first of its class to be approved by the United States regulators [Food and Drug Administration (FDA)] for the treatment of DMD...
October 2017: Nucleic Acid Therapeutics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"