Read by QxMD icon Read

Beilstein Journal of Nanotechnology

Paolo Visconti, Patrizio Primiceri, Daniele Longo, Luciano Strafella, Paolo Carlucci, Mauro Lomascolo, Arianna Cretì, Giuseppe Mele
This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters...
2017: Beilstein Journal of Nanotechnology
Fanan Wei, Ligang Yao, Fei Lan, Guangyong Li, Lianqing Liu
In this paper, polymer solar cells with a tandem structure were investigated and optimized using a multiscale simulation scheme. In the proposed multiscale simulation, multiple aspects - optical calculation, mesoscale simulation, device scale simulation and optimal power conversion efficiency searching modules - were studied together to give an optimal result. Through the simulation work, dependencies of device performance on the tandem structures were clarified by tuning the thickness, donor/acceptor weight ratio as well as the donor-acceptor distribution in both active layers of the two sub-cells...
2017: Beilstein Journal of Nanotechnology
Barbara Lyson-Sypien, Anna Kusior, Mieczylaw Rekas, Jan Zukrowski, Marta Gajewska, Katarzyna Michalow-Mauke, Thomas Graule, Marta Radecka, Katarzyna Zakrzewska
The aim of this research is to study the role of nanocrystalline TiO2/SnO2 n-n heterojunctions for hydrogen sensing. Nanopowders of pure SnO2, 90 mol % SnO2/10 mol % TiO2, 10 mol % SnO2/90 mol % TiO2 and pure TiO2 have been obtained using flame spray synthesis (FSS). The samples have been characterized by BET, XRD, SEM, HR-TEM, Mössbauer effect and impedance spectroscopy. Gas-sensing experiments have been performed for H2 concentrations of 1-3000 ppm at 200-400 °C. The nanomaterials are well-crystallized, anatase TiO2, rutile TiO2 and cassiterite SnO2 polymorphic forms are present depending on the chemical composition of the powders...
2017: Beilstein Journal of Nanotechnology
Piotr Olszowski, Lukasz Zajac, Szymon Godlewski, Bartosz Such, Rémy Pawlak, Antoine Hinaut, Res Jöhr, Thilo Glatzel, Ernst Meyer, Marek Szymonski
Zn(II)phthalocyanine molecules (ZnPc) were thermally deposited on a rutile TiO2(011) surface and on Zn(II)meso-tetraphenylporphyrin (ZnTPP) wetting layers at room temperature and after elevated temperature thermal processing. The molecular homo- and heterostructures were characterized by high-resolution scanning tunneling microscopy (STM) at room temperature and their geometrical arrangement and degree of ordering are compared with the previously studied copper phthalocyanine (CuPc) and ZnTPP heterostructures...
2017: Beilstein Journal of Nanotechnology
Jagoba Iturri, Ana C Vianna, Alberto Moreno-Cencerrado, Dietmar Pum, Uwe B Sleytr, José Luis Toca-Herrera
Quartz crystal microbalance with dissipation monitoring (QCM-D) has been employed to study the assembly and recrystallization kinetics of isolated SbpA bacterial surface proteins onto silicon dioxide substrates of different surface wettability. Surface modification by UV/ozone oxidation or by vapor deposition of 1H,1H,2H,2H-perfluorododecyltrichlorosilane yielded hydrophilic or hydrophobic samples, respectively. Time evolution of frequency and dissipation factors, either individually or combined as the so-called Df plots, showed a much faster formation of crystalline coatings for hydrophobic samples, characterized by a phase-transition peak at around the 70% of the total mass adsorbed...
2017: Beilstein Journal of Nanotechnology
Elena Dilonardo, Michele Penza, Marco Alvisi, Gennaro Cassano, Cinzia Di Franco, Francesco Palmisano, Luisa Torsi, Nicola Cioffi
Pristine and electrochemically Pd-modified ZnO nanorods (ZnO NRs) were proposed as active sensing layers in chemiresistive gas sensors for hydrocarbon (HC) gas detection (e.g., CH4, C3H8, C4H10). The presence of Pd nanoparticles (NPs) on the surface of ZnO NRs, obtained after the thermal treatment at 550 °C, was revealed by morphological and surface chemical analyses, using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The effect of the Pd catalyst on the performance of the ZnO-based gas sensor was evaluated by comparing the sensing results with those of pristine ZnO NRs, at an operating temperature of 300 °C and for various HC gas concentrations in the range of 30-1000 ppm...
2017: Beilstein Journal of Nanotechnology
Marco Salerno, Amirreza Shayganpour, Barbara Salis, Silvia Dante
Thin anodic porous alumina (tAPA) was fabricated from a 500 nm thick aluminum (Al) layer coated on silicon wafers, through single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm) gold (Au) layer. The as obtained tAPA-Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA) and aminothiol (AT), and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB)...
2017: Beilstein Journal of Nanotechnology
Wojciech Szmyt, Carlos Guerra, Ivo Utke
In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires) as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i) the gas diffusion coefficient inside such arrays, (ii) the time between collisions of molecules with the nanocylinder walls (mean time of flight), (iii) the surface impingement rate, and (iv) the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport...
2017: Beilstein Journal of Nanotechnology
Matthias W Speidel, Malte Kleemeier, Andreas Hartwig, Klaus Rischka, Angelika Ellermann, Rolf Daniels, Oliver Betz
Background: Based on previous chemical analyses of insect tarsal adhesives, we prepared 12 heterogeneous synthetic emulsions mimicking the polar/non-polar principle, analysed their microscopical structure and tested their adhesive, frictional, and rheological properties. Results: The prepared emulsions varied in their consistency from solid rubber-like, over soft elastic, to fluid (watery or oily). With droplet sizes >100 nm, all the emulsions belonged to the common type of macroemulsions. The emulsions of the first generation generally showed broader droplet-size ranges compared with the second generation, especially when less defined components such as petrolatum or waxes were present in the lipophilic fraction of the first generation of emulsions...
2017: Beilstein Journal of Nanotechnology
Felix Pyatkov, Svetlana Khasminskaya, Vadim Kovalyuk, Frank Hennrich, Manfred M Kappes, Gregory N Goltsman, Wolfram H P Pernice, Ralph Krupke
Carbon nanotubes (CNTs) have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps...
2017: Beilstein Journal of Nanotechnology
Gunther Scheunert, Sidney R Cohen, René Kullock, Ryan McCarron, Katya Rechev, Ifat Kaplan-Ashiri, Ora Bitton, Paul Dawson, Bert Hecht, Dan Oron
Heat-assisted magnetic recording (HAMR) is often considered the next major step in the storage industry: it is predicted to increase the storage capacity, the read/write speed and the data lifetime of future hard disk drives. However, despite more than a decade of development work, the reliability is still a prime concern. Featuring an inherently fragile surface-plasmon resonator as a highly localized heat source, as part of a near-field transducer (NFT), the current industry concepts still fail to deliver drives with sufficient lifetime...
2017: Beilstein Journal of Nanotechnology
Carmela Bonavolontà, Carla Aramo, Massimo Valentino, Giampiero Pepe, Sergio De Nicola, Gianfranco Carotenuto, Angela Longo, Mariano Palomba, Simone Boccardi, Carosena Meola
In this work we present a novel route to produce a graphene-based film on a polymer substrate. A transparent graphite colloidal suspension was applied to a slat of poly(methyl methacrylate) (PMMA). The good adhesion to the PMMA surface, combined with the shear stress, allows a uniform and continuous spreading of the graphite nanocrystals, resulting in a very uniform graphene multilayer coating on the substrate surface. The fabrication process is simple and yields thin coatings characterized by high optical transparency and large electrical piezoresitivity...
2017: Beilstein Journal of Nanotechnology
Sergei N Chebotarev, Alexander S Pashchenko, Leonid S Lunin, Elena N Zhivotova, Georgy A Erimeev, Marina L Lunina
The features of InAs quantum dots obtained on GaAs(001) single-crystal substrates by ion-beam sputtering were investigated. It has been shown that in the range of ion energies of 150 to 200 eV at a temperature of 500 °C and a beam current of 120 µA InAs quantum dots with average dimensions below 15 nm and a surface density of 10(11) cm(-2) are formed. The technique of controlled doping of InAs/GaAs nanostructures using a SnTe solid-state source was proposed. It has been established that a maximum donor concentration of 8...
2017: Beilstein Journal of Nanotechnology
Roberta D'Agata, Pasquale Palladino, Giuseppe Spoto
Gold nanoparticles (AuNPs) exhibit unique properties that can be modulated through a tailored surface functionalization, enabling their targeted use in biochemical sensing and medical diagnostics. In particular, streptavidin-modified AuNPs are increasingly used for biosensing purposes. We report here a study of AuNPs surface-functionalized with streptavidin-biotinylated oligonucleotide, focussing on the role played by the oligonucleotide probes in the stabilization/destabilization of the functionalized nanoparticle dispersion...
2017: Beilstein Journal of Nanotechnology
Niall Crawford, Thomas Endlein, Jonathan T Pham, Mathis Riehle, W Jon P Barnes
Tree frogs need to adhere to surfaces of various roughnesses in their natural habitats; these include bark, leaves and rocks. Rough surfaces can alter the effectiveness of their toe pads, due to factors such as a change of real contact area and abrasion of the pad epithelium. Here, we tested the effect of surface roughness on the attachment abilities of the tree frog Litoria caerulea. This was done by testing shear and adhesive forces on artificial surfaces with controlled roughness, both on single toe pads and whole animal scales...
2016: Beilstein Journal of Nanotechnology
Florian Antony, Rainer Grießhammer, Thomas Speck, Olga Speck
Background: The debate on the question whether biomimetics has a specific potential to contribute to sustainability is discussed among scientists, business leaders, politicians and those responsible for project funding. The objective of this paper is to contribute to this controversial debate by presenting the sustainability assessment of one of the most well-known and most successful biomimetic products: the façade paint Lotusan(®). Results: As a first step it has been examined and verified that the façade paint Lotusan(®) is correctly defined as a biomimetic product...
2016: Beilstein Journal of Nanotechnology
Anna Kosinova, Ruth Schwaiger, Leonid Klinger, Eugen Rabkin
We employed depth-sensing nanoindentation to produce ordered arrays of indents on the surface of 50 nm-thick Au(Fe) films deposited on sapphire substrates. The maximum depth of the indents was approximately one-half of the film thickness. The indented films were annealed at a temperature of 700 °C in a forming gas atmosphere. While the onset of solid-state dewetting was observed in the unperturbed regions of the film, no holes to the substrate were observed in the indented regions. Instead, the film annealing resulted in the formation of hillocks at the indent locations, followed by their dissipation and the formation of shallow depressions nearby after subsequent annealing treatments...
2016: Beilstein Journal of Nanotechnology
Mihail Iacob, Carmen Racles, Codrin Tugui, George Stiubianu, Adrian Bele, Liviu Sacarescu, Daniel Timpu, Maria Cazacu
Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2(III)Fe(II)O(CH3COO)6(H2O)3]·2H2O (FeAc1), μ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3∙4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles...
2016: Beilstein Journal of Nanotechnology
Natalie Frese, Shelby Taylor Mitchell, Christof Neumann, Amanda Bowers, Armin Gölzhäuser, Klaus Sattler
Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Foams with different densities were produced by changing the process temperature in the autoclave reactor. This work illustrates how the geometrical structure, electron core levels, and the vibrational signatures change when the density of the foams is varied. We find that the low-density foams have very uniform structure consisting of micropearls with ≈2-3 μm average diameter...
2016: Beilstein Journal of Nanotechnology
Patrick A Reissner, Jean-Nicolas Tisserant, Antoni Sánchez-Ferrer, Raffaele Mezzenga, Andreas Stemmer
Gold nanoparticle monolayers provide convenient templates to study charge transport in organic molecules beyond single junction techniques. Conductance is reported to increase by several orders of magnitude following immersion of alkanethiol-stabilized gold nanoparticle monolayers in a solution containing conjugated thiol-functionalized molecules. Typically, this observation is attributed to molecular exchange. Less attention has been paid to the role of the solvent alone. Here, we report on an increase in conductance of dodecanethiol-stabilized gold nanoparticle monolayers on Si/SiO2 by an average factor of 36 and 22 after immersion in pure ethanol (EtOH) and tetrahydrofuran (THF), respectively...
2016: Beilstein Journal of Nanotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"