Read by QxMD icon Read

Annual Review of Marine Science

Stephen J Giovannoni
SAR11 is a group of small, carbon-oxidizing cells that reach a global estimated population size of 2.4 × 10(28) cells-approximately 25% of all plankton. They are found throughout the oceans but reach their largest numbers in stratified, oligotrophic gyres, which are an expanding habitat in the warming oceans. SAR11 likely had a Precambrian origin and, over geological time, evolved into the niche of harvesting labile, low-molecular-weight dissolved organic matter (DOM). SAR11 cells are minimal in size and complexity, a phenomenon known as streamlining that is thought to benefit them by lowering the material costs of replication and maximizing transport functions that are essential to competition at ultralow nutrient concentrations...
September 28, 2016: Annual Review of Marine Science
J A Goldbogen, D Cade, J Calambokidis, A S Friedlaender, J Potvin, P S Segre, A J Werth
Baleen whales are gigantic obligate filter feeders that exploit aggregations of small-bodied prey in littoral, epipelagic, and mesopelagic ecosystems. At the extreme of maximum body size observed among mammals, baleen whales exhibit a unique combination of high overall energetic demands and low mass-specific metabolic rates. As a result, most baleen whale species have evolved filter-feeding mechanisms and foraging strategies that take advantage of seasonally abundant yet patchily and ephemerally distributed prey resources...
September 7, 2016: Annual Review of Marine Science
Kara Lavender Law
Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment...
September 7, 2016: Annual Review of Marine Science
Galen A McKinley, Amanda R Fay, Nicole S Lovenduski, Darren J Pilcher
Since preindustrial times, the ocean has removed from the atmosphere 41% of the carbon emitted by human industrial activities. Despite significant uncertainties, the balance of evidence indicates that the globally integrated rate of ocean carbon uptake is increasing in response to increasing atmospheric CO2 concentrations. The El Niño-Southern Oscillation in the equatorial Pacific dominates interannual variability of the globally integrated sink. Modes of climate variability in high latitudes are correlated with variability in regional carbon sinks, but mechanistic understanding is incomplete...
August 31, 2016: Annual Review of Marine Science
John M Bane, Ruoying He, Michael Muglia, Caroline F Lowcher, Yanlin Gong, Sara M Haines
The kinetic energy in ocean currents, or marine hydrokinetic (MHK) energy, is a renewable energy resource that can help meet global energy requirements. An ocean circulation model-based census shows that subtropical surface western boundary currents (WBCs) are the only nearshore, large-scale currents swift enough to drive large electricity-generating ocean turbines envisioned for future use. We review several WBCs in the context of kinetic energy extraction. The power density in the Gulf Stream off North Carolina at times reaches several thousand watts per square meter at 75 m below the surface, and the annual average power is approximately 500-1,000 W m(-2)...
August 24, 2016: Annual Review of Marine Science
Timothy M Lenton, Stuart J Daines
The ocean has undergone several profound biogeochemical transformations in its 4-billion-year history, and these were an integral part of the coevolution of life and the planet. This review focuses on changes in ocean redox state as controlled by changes in biological activity, nutrient concentrations, and atmospheric O2. Motivated by disparate interpretations of available geochemical data, we aim to show how quantitative modeling-spanning microbial mats, shelf seas, and the open ocean-can help constrain past ocean biogeochemical redox states and show what caused transformations between them...
August 19, 2016: Annual Review of Marine Science
Rick Lumpkin, Tamay Özgökmen, Luca Centurioni
Surface drifting buoys, or drifters, are used in oceanographic and climate research, oil spill tracking, weather forecasting, search and rescue operations, calibration and validation of velocities from high-frequency radar and from altimeters, iceberg tracking, and support of offshore drilling operations. In this review, we present a brief history of drifters, from the message in a bottle to the latest satellite-tracked, multisensor drifters. We discuss the different types of drifters currently used for research and operations as well as drifter designs in development...
August 19, 2016: Annual Review of Marine Science
Alastair R Harborne, Alice Rogers, Yves-Marie Bozec, Peter J Mumby
Coral reefs provide critical services to coastal communities, and these services rely on ecosystem functions threatened by stressors. By summarizing the threats to the functioning of reefs from fishing, climate change, and decreasing water quality, we highlight that these stressors have multiple, conflicting effects on functionally similar groups of species and their interactions, and that the overall effects are often uncertain because of a lack of data or variability among taxa. The direct effects of stressors on links among functional groups, such as predator-prey interactions, are particularly uncertain...
August 19, 2016: Annual Review of Marine Science
Paola Malanotte-Rizzoli
Quoting the ancient Romans: Audentes Fortuna iuvat. Being in the right place at the right time is useless if you do not grasp your Fortuna and build upon it. In this article, I expound on the milestones of my multiform research career, which over more than 40 years brought me from Venice to California to MIT; from the Venice problem to highly nonlinear, coherent structures in the ocean and atmosphere; and from the mare nostrum (the Mediterranean Sea), a laboratory for global processes, to the tropical ocean-atmosphere systems and regional coupled climate models of the Maritime Continent...
August 8, 2016: Annual Review of Marine Science
Diane K Stoecker, Per Juel Hansen, David A Caron, Aditee Mitra
Mixotrophs are important components of the bacterioplankton, phytoplankton, microzooplankton, and (sometimes) zooplankton in coastal and oceanic waters. Bacterivory among the phytoplankton may be important for alleviating inorganic nutrient stress and may increase primary production in oligotrophic waters. Mixotrophic phytoflagellates and dinoflagellates are often dominant components of the plankton during seasonal stratification. Many of the microzooplankton grazers, including ciliates and Rhizaria, are mixotrophic owing to their retention of functional algal organelles or maintenance of algal endosymbionts...
July 6, 2016: Annual Review of Marine Science
Ken Buesseler, Minhan Dai, Michio Aoyama, Claudia Benitez-Nelson, Sabine Charmasson, Kathryn Higley, Vladimir Maderich, Pere Masqué, Deborah Oughton, John N Smith
The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea...
June 30, 2016: Annual Review of Marine Science
Karen L Casciotti
The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry...
2016: Annual Review of Marine Science
K H Brink
Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence...
2016: Annual Review of Marine Science
L D Talley, R A Feely, B M Sloyan, R Wanninkhof, M O Baringer, J L Bullister, C A Carlson, S C Doney, R A Fine, E Firing, N Gruber, D A Hansell, M Ishii, G C Johnson, K Katsumata, R M Key, M Kramp, C Langdon, A M Macdonald, J T Mathis, E L McDonagh, S Mecking, F J Millero, C W Mordy, T Nakano, C L Sabine, W M Smethie, J H Swift, T Tanhua, A M Thurnherr, M J Warner, J-Z Zhang
Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean...
2016: Annual Review of Marine Science
Kelly J Benoit-Bird, Gareth L Lawson
Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate...
2016: Annual Review of Marine Science
Joseph J Vallino, Christopher K Algar
Nearly 100 years ago, Alfred Lotka published two short but insightful papers describing how ecosystems may organize. Principally, Lotka argued that ecosystems will grow in size and that their cycles will spin faster via predation and nutrient recycling so as to capture all available energy, and that evolution and natural selection are the mechanisms by which this occurs and progresses. Lotka's ideas have often been associated with the maximum power principle, but they are more consistent with recent developments in nonequilibrium thermodynamics, which assert that complex systems will organize toward maximum entropy production (MEP)...
2016: Annual Review of Marine Science
D Stammer, M Balmaseda, P Heimbach, A Köhl, A Weaver
Ocean data assimilation brings together observations with known dynamics encapsulated in a circulation model to describe the time-varying ocean circulation. Its applications are manifold, ranging from marine and ecosystem forecasting to climate prediction and studies of the carbon cycle. Here, we address only climate applications, which range from improving our understanding of ocean circulation to estimating initial or boundary conditions and model parameters for ocean and climate forecasts. Because of differences in underlying methodologies, data assimilation products must be used judiciously and selected according to the specific purpose, as not all related inferences would be equally reliable...
2016: Annual Review of Marine Science
C D Woodroffe, K Rogers, K L McKee, C E Lovelock, I A Mendelssohn, N Saintilan
Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions, related primarily to elevation and hydroperiod, influence mangrove distributions; this review considers how these distributions change over time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks, and tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings...
2016: Annual Review of Marine Science
Elizabeth A Canuel, Amber K Hardison
Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species...
2016: Annual Review of Marine Science
Amala Mahadevan
Life in the ocean relies on the photosynthetic production of phytoplankton, which is influenced by the availability of light and nutrients that are modulated by a host of physical processes. Submesoscale processes are particularly relevant to phytoplankton productivity because the timescales on which they act are similar to those of phytoplankton growth. Their dynamics are associated with strong vorticity and strain rates that occur on lateral scales of 0.1-10 km. They can support vertical velocities as large as 100 m d(-1) and play a crucial role in transporting nutrients into the sunlit ocean for phytoplankton production...
2016: Annual Review of Marine Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"