journal
MENU ▼
Read by QxMD icon Read
search

Biofabrication

journal
https://www.readbyqxmd.com/read/28300041/surface-micromorphology-of-cross-linked-tetrafunctional-polylactide-scaffolds-inducing-vessel-growth-and-bone-formation
#1
Daria Kuznetsova, Aleksey Ageykin, Anastasia Koroleva, Andrea Deiwick, Anastasia Shpichka, Anna Solovieva, Sergey Kostjuk, Aleksandra Meleshina, Svetlana Rodimova, Anastasia Akovanceva, Denis Butnaru, Anastasia Frolova, Elena Zagaynova, Boris Chichkov, Victor Bagratashvili, Peter Timashev
In the presented study, we have developed a synthetic strategy allowing a gradual variation of a polylactide arms' length, which later influences the micromorphology of the scaffold surface, formed by a two-photon polymerization technique. It has been demonstrated that the highest number of cells is present on the scaffolds with the roughest surface made of the polylactide with longer arms (PLA760), and osteogenic differentiation of mesenchymal stem cells is most pronounced on such scaffolds. According to the results of biological testing, the PLA760 scaffolds were implanted into a created cranial defect in a mouse for an in vivo assessment of the bone tissue formation...
March 16, 2017: Biofabrication
https://www.readbyqxmd.com/read/28291020/cell-adhesion-pattern-created-by-oste-polymers
#2
Wenjia Liu, Yiyang Li, Xianting Ding
Engineering surfaces with functional polymers is a crucial issue in the field of micro/nanofabrication and cell-material interface studies. For many applications of surface patterning, it does not need cells to attach on the whole surface. Herein, we introduce a novel polymer fabrication protocol of off-stoichiometry thiol-ene (OSTE) polymers to create heterogeneity on the surface by utilizing 3D printing and soft-lithography. By choosing two OSTE polymers with different functional groups, we create a pattern where only parts of the surface can facilitate cell adhesion...
March 14, 2017: Biofabrication
https://www.readbyqxmd.com/read/28287080/three-dimensional-tissues-using-human-pluripotent-stem-cell-spheroids-as-biofabrication-building-blocks
#3
Haishuang Lin, Qiang Li, Yuguo Lei
A recently emerged approach for tissue engineering is to biofabricate tissues using cellular spheroids as building blocks. Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), can be cultured to generate large numbers of cells and presumably be differentiated into all the cell types of human body in vitro, thus are ideal cell source for biofabrication. We previously developed a hydrogel-based cell culture system that can economically produce large numbers of hPSC spheroids...
March 13, 2017: Biofabrication
https://www.readbyqxmd.com/read/28287077/bone-regeneration-in-3d-printing-bioactive-ceramic-scaffolds-with-improved-tissue-material-interface-pore-architecture-in-thin-wall-bone-defect
#4
Huifeng Shao, Xiurong Ke, An Liu, Miao Sun, Yong He, Xianyan Yang, Jianzhong Fu, Yanming Liu, Lei Zhang, Guojing Yang, Sanzhong Xu, Zhongru Gou
Three-dimensional (3D) printing bioactive ceramics have demonstrated alternative approaches to bone tissue repair, but an optimized materials system for improving the recruitment of host osteogenic cells into the bone defect and enhancing targeted repair of the thin-wall craniomaxillofacial defects remains elusive. Herein we systematically evaluated the role of side-wall pore architecture in the direct-ink-writing bioceramic scaffolds on mechanical properties and osteogenic capacity in rabbit calvarial defects...
March 13, 2017: Biofabrication
https://www.readbyqxmd.com/read/28266351/biofabrication-of-a-co-culture-system-in-an-osteoid-like-hydrogel-matrix
#5
Tobias Zehnder, Aldo Boccaccini, Rainer Detsch
Biofabrication aims to develop functional, biological constructs using automated processes (additive manufacturing, AM) involving different cell types and biomaterials [1]. As bone tissue is based on the crosstalk between osteoblasts and osteoclasts at least, evaluating cell-cell and cell-material interactions is of interest to understand bone remodeling. There is increasing interest in the role of osteoclasts not only considering bone resorption, but also their influence on the proliferation, migration and differentiation of osteoblasts...
March 7, 2017: Biofabrication
https://www.readbyqxmd.com/read/28244880/3d-printing-plga-a-quantitative-examination-of-the-effects-of-polymer-composition-and-printing-parameters-on-print-resolution
#6
Ting Guo, Timothy Holzberg, Casey Lim, Feng Gao, Ankit Gargava, Jordan Trachtenberg, Antonios Mikos, John Fisher
In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meets patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science...
February 28, 2017: Biofabrication
https://www.readbyqxmd.com/read/28229956/development-of-a-thermosensitive-hama-containing-bio-ink-for-the-fabrication-of-composite-cartilage-repair-constructs
#7
Vivian Hilda Maria Mouser, Anna Abbadessa, Riccardo Levato, Wim Hennink, Tina Vermonden, Debby Gawlitta, Jos Malda
Fine-tuning of bio-ink composition and material processing parameters is crucial for the development of biomechanically relevant cartilage constructs. This study aims to design and develop cartilage constructs with tunable internal architectures and relevant mechanical properties. More specifically, the potential of methacrylated hyaluronic acid (HAMA) added to thermosensitive hydrogels composed of methacrylated poly[N-(2-hydroxypropyl)methacrylamide mono/dilactate] (pHPMA-lac)/polyethylene glycol (PEG) triblock copolymers, to optimize cartilage-like tissue formation by embedded chondrocytes, and enhance printability was explored...
February 23, 2017: Biofabrication
https://www.readbyqxmd.com/read/28224971/biofabrication-of-bundles-of-poly-lactic-acid-collagen-blends-mimicking-the-fascicles-of-the-human-achille-tendon
#8
Alberto Sensini, Chiara Gualandi, Luca Cristofolini, Gianluca Tozzi, Manuela Dicarlo, Gabriella Teti, Monica Mattioli-Belmonte, Maria Letizia Focarete
Electrospinning is a promising technique for the production of scaffolds aimed at the regeneration of soft tissues. The aim of this work was to develop electrospun bundles mimicking the architecture and mechanical properties of the fascicles of the human Achille tendon. Two different blends of poly(L-lactic acid) (PLLA) and collagen (Coll) were tested, PLLA/Coll-75/25 and PLLA/Coll-50/50, and compared with bundles of pure PLLA. First, a complete physico-chemical characterization was performed on non-woven mats made of randomly arranged fibers...
February 22, 2017: Biofabrication
https://www.readbyqxmd.com/read/28332482/development-of-novel-silk-fibroin-polyvinyl-alcohol-sol-gel-bioactive-glass-composite-matrix-by-modified-layer-by-layer-electrospinning-method-for-bone-tissue-construct-generation
#9
B N Singh, K Pramanik
The worldwide occurrence of bone tissue related defects as well as diseases and lack of successful perpetual cure has attracted attention and accelerated exploration of composite scaffolding material with superior bioactivity, osteoinductivity and osteoconductivity properties. Among such biomaterials, silk fibroin and bioglass composite attained special emphasis to develop tissue engineered construct with a hierarchical structure ranging from nano to microscale thereby mimicking bone tissue extracellular matrix...
March 23, 2017: Biofabrication
https://www.readbyqxmd.com/read/28332479/3d-tissue-formation-by-stacking-detachable-cell-sheets-formed-on-nanofiber-mesh
#10
Min Sung Kim, Byungjun Lee, Hong Nam Kim, Seokyoung Bang, Hee Seok Yang, Seong Min Kang, Kahp-Yang Suh, Suk-Hee Park, Noo Li Jeon
We present a novel approach for assembling 3D tissue by layer-by-layer stacking of cell sheets formed on aligned nanofiber mesh. A rigid frame was used to repeatedly collect aligned electrospun PCL (polycaprolactone) nanofiber to form a mesh structure with average distance between fibers 6.4 µm. When human umbilical vein endothelial cells (HUVECs), human foreskin dermal fibroblasts, and skeletal muscle cells (C2C12) were cultured on the nanofiber mesh, they formed confluent monolayers and could be handled as continuous cell sheets with areas 3 × 3 cm(2) or larger...
March 23, 2017: Biofabrication
https://www.readbyqxmd.com/read/28332478/addressed-immobilization-of-biofunctionalized-diatoms-on-electrodes-by-gold-electrodeposition
#11
S Leonardo, D Garibo, M Fernández-Tejedor, C K O'Sullivan, M Campàs
Diatoms are single cell microalgae with a silica shell (frustule), which possess a micro/nanoporous pattern of unparalleled diversity far beyond the possibilities of current micro- and nanofabrication techniques. To explore diatoms as natural three-dimensional nanostructured supports in sensing and biosensing devices, a simple, rapid and stable method to immobilize diatoms via gold electrodeposition is described. In this process, gold microstructures are formed, immobilizing diatoms by entrapment or crossing their nanopores...
March 23, 2017: Biofabrication
https://www.readbyqxmd.com/read/28211365/converging-biofabrication-and-organoid-technologies-the-next-frontier-in-hepatic-and-intestinal-tissue-engineering
#12
Kerstin Schneeberger, Bart Spee, Pedro Costa, Norman Sachs, Hans Clevers, Jos Malda
Adult tissue stem cells can form self-organizing 3D organoids in vitro. Organoids resemble small units of their organ of origin and have great potential for tissue engineering, as well as models of disease. However, current culture technology limits the size, architecture and complexity of organoids. Here, we review the establishment of intestinal and hepatic organoids and discuss how the convergence of organoids and biofabrication technologies can help overcome current limitations, and thereby further advance the translational application of organoids in tissue engineering and regenerative medicine...
March 6, 2017: Biofabrication
https://www.readbyqxmd.com/read/28245199/additive-manufacturing-of-polymer-melts-for-implantable-medical-devices-and-scaffolds
#13
Almoatazbellah Youssef, Scott J Hollister, Paul D Dalton
Melt processing is routinely used to fabricate medical polymeric devices/implants for clinical reconstruction and can be incorporated into quality systems procedures for medical device manufacture. As additive manufacturing (AM) becomes increasingly used for biomaterials and biofabrication, the translation of new, customizable, medical devices to the clinic becomes paramount. Melt processing is therefore a distinguishable group within AM that provides an avenue to manufacture scaffolds/implants with a clinical end-point...
February 28, 2017: Biofabrication
https://www.readbyqxmd.com/read/28169834/development-of-biomimetic-micro-patterned-device-incorporated-with-neurotrophic-gradient-and-supportive-schwann-cells-for-the-applications-in-neural-tissue-engineering
#14
Chia-Wei Yeh, Li-Wen Wang, Hsi-Chin Wu, Yi-Kong Hsieh, Jane Wang, Ming-Hong Chen, Tzu-Wei Wang
In these years, the artificial nerve guidance conduit (NGC) has been developed as an alternative way to repair peripheral nerve injury. Unlike autologous nerve graft, the artificial NGC without proper stimulating factors and guidance cues still cannot obtain satisfactory prognosis for clinical patients. In this study, a biodegradable polymer-based implantable device has been developed and characterized. By incorporating three stimulating factors: (1) micro-patterned surface that can directionally guide the axon as physical cue; (2) neurotrophic gradient membrane that can continually attract axon outgrowth from the proximal to distal stump as chemical cue; (3) Schwann cells (SCs) that can support the growth of neurite and form myelin sheath around axon as biological cue, we expect that this construct can be used as a promising NGC for peripheral nerve regeneration...
February 28, 2017: Biofabrication
https://www.readbyqxmd.com/read/28222045/validation-of-scaffold-design-optimization-in-bone-tissue-engineering-finite-element-modeling-versus-designed-experiments
#15
Nicholas Uth, Jens Mueller, Byran Smucker, Azizeh-Mitra Yousefi
This study reports the development of biological/synthetic scaffolds for bone tissue engineering (TE) via 3D bioplotting. These scaffolds were composed of poly(L-lactic-co-glycolic acid) (PLGA), type I collagen, and nano-hydroxyapatite (nHA) in an attempt to mimic the extracellular matrix of bone. The solvent used for processing the scaffolds was 1,1,1,3,3,3-hexafluoro-2-propanol. The produced scaffolds were characterized by scanning electron microscopy, microcomputed tomography, thermogravimetric analysis, and unconfined compression test...
February 21, 2017: Biofabrication
https://www.readbyqxmd.com/read/28222044/endocrine-system-on-chip-for-a-diabetes-treatment-model
#16
Dao Thi Thuy Nguyen, Danny van Noort, In-Kyung Jeong, Sungsu Park
The endocrine system is a collection of glands producing hormones which, among others, regulates metabolism, growth and development. One important group of endocrine diseases is diabetes, which is caused by a deficiency or diminished effectiveness of endogenous insulin. By using a microfluidic perfused 3D cell-culture chip, we developed an 'endocrine system on chip' to potentially be able to screen drugs for the treatment of diabetes by measuring insulin release over time. Insulin-secreting β-cells are located in the pancreas, while L-cells, located in the small intestines, stimulate insulin secretion...
February 21, 2017: Biofabrication
https://www.readbyqxmd.com/read/28140346/increased-lipid-accumulation-and-adipogenic-gene-expression-of-adipocytes-in-3d-bioprinted-nanocellulose-scaffolds
#17
I Henriksson, P Gatenholm, D A Hägg
Compared to standard 2D culture systems, new methods for 3D cell culture of adipocytes could provide more physiologically accurate data and a deeper understanding of metabolic diseases such as diabetes. By resuspending living cells in a bioink of nanocellulose and hyaluronic acid, we were able to print 3D scaffolds with uniform cell distribution. After one week in culture, cell viability was 95%, and after two weeks the cells displayed a more mature phenotype with larger lipid droplets than standard 2D cultured cells...
February 21, 2017: Biofabrication
https://www.readbyqxmd.com/read/28195834/surface-acoustic-waves-induced-micropatterning-of-cells-in-gelatin-methacryloyl-gelma-hydrogels
#18
Shahid M Naseer, Amir Manbachi, Mohamadmahdi Samandari, Philipp Walch, Yuan Gao, Yu Shrike Zhang, Farideh Davoudi, Wesley Wang, Karen Abrinia, Jonathan M Cooper, Ali Khademhosseini, Su Ryon Shin
Acoustic force patterning is an emerging technology that provides a platform to control the spatial location of cells in a rapid, accurate, yet contactless manner. However, very few studies have been reported on the usage of acoustic force patterning for the rapid arrangement of biological objects, such as cells, in a three-dimensional (3D) environment. In this study, we report on a bio-acoustic force patterning technique, which uses surface acoustic waves (SAWs) for the rapid arrangement of cells within an extracellular matrix-based hydrogel such as gelatin methacryloyl (GelMA)...
February 14, 2017: Biofabrication
https://www.readbyqxmd.com/read/28140360/assembling-of-electrospun-meshes-into-three-dimensional-porous-scaffolds-for-bone-repair
#19
Juqing Song, Guanglin Zhu, Lin Wang, Geng An, Xuetao Shi, Yingjun Wang
Technical limitations of traditional electrospinning make it hard to produce three-dimensional (3D) scaffolds with hierarchical pore structures. Here, porous polycaprolactone (PCL) nanofiber meshes with different nano-hydroxyapatite (nHA) concentrations were prepared by electrospinning with stainless steel mesh as the collector, and 3D porous nanofiber scaffolds were fabricated via layer-by-layer assembly with a special binder (18% PCL/DCM solution). The single layer nanofiber mesh possessed very regular morphology with a hollow structure, and the nHA was not only embedded in the nanofiber but also exposed on the surfaces of the fiber, resulting in the improved surface chemical properties...
February 14, 2017: Biofabrication
https://www.readbyqxmd.com/read/28140345/ultrathin-transparent-membranes-for-cellular-barrier-and-co-culture-models
#20
Robert N Carter, Stephanie M Casillo, Andrea R Mazzocchi, Jon-Paul S DesOrmeaux, James A Roussie, Thomas R Gaborski
Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100-300 nm)...
February 14, 2017: Biofabrication
journal
journal
42822
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"