Read by QxMD icon Read

Current Chemical Genomics

Catherine Z Chen, Noel Southall, Andrey Galkin, Kap Lim, Juan J Marugan, Liudmila Kulakova, Paul Shinn, Danielle van Leer, Wei Zheng, Osnat Herzberg
The human pathogen Giardia lamblia is an anaerobic protozoan parasite that causes giardiasis, one of the most common diarrheal diseases worldwide. Although several drugs are available for the treatment of giardisis, resistance to these drugs has been reported and is likely to increase. The Giardia carbamate kinase (glCK) plays an essential role in Giardia metabolism and has no homologs in humans, making it an attractive candidate for anti-Giardia drug development. We have developed a luminescent enzyme coupled assay to measure the activity of glCK by quantitating the amount of ATP produced by the enzyme...
2012: Current Chemical Genomics
Xiao Yajuan, Liang Xin, Li Zhiyuan
The patch clamp technique is commonly used in electrophysiological experiments and offers direct insight into ion channel properties through the characterization of ion channel activity. This technique can be used to elucidate the interaction between a drug and a specific ion channel at different conformational states to understand the ion channel modulators' mechanisms. The patch clamp technique is regarded as a gold standard for ion channel research; however, it suffers from low throughput and high personnel costs...
2012: Current Chemical Genomics
Steven A Titus, Noel Southall, Juan Marugan, Christopher P Austin, Wei Zheng
A hallmark of Huntington's disease is the presence of a large polyglutamine expansion in the first exon of the Huntingtin protein and the propensity of protein aggregation by the mutant proteins. Aberrant protein aggregation also occurs in other polyglutamine expansion disorders, as well as in other neurodegenerative diseases including Parkinson's, Alzheimer's, and prion diseases. However, the pathophysiological role of these aggregates in the cell death that characterizes the diseases remains unclear. Identification of small molecule probes that modulate protein aggregation and cytotoxicity caused by aggregated proteins may greatly facilitate the studies on pathogenesis of these diseases and potentially lead to development of new therapies...
2012: Current Chemical Genomics
Lance P Encell, Rachel Friedman Ohana, Kris Zimmerman, Paul Otto, Gediminas Vidugiris, Monika G Wood, Georgyi V Los, Mark G McDougall, Chad Zimprich, Natasha Karassina, Randall D Learish, Robin Hurst, James Hartnett, Sarah Wheeler, Pete Stecha, Jami English, Kate Zhao, Jacqui Mendez, Hélène A Benink, Nancy Murphy, Danette L Daniels, Michael R Slater, Marjeta Urh, Aldis Darzins, Dieter H Klaubert, Robert F Bulleit, Keith V Wood
Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction...
2012: Current Chemical Genomics
Marjeta Urh, Martin Rosenberg
Understanding protein function and interaction is central to the elucidation of biological processes. Systematic analysis of protein interactions have shown that the eukaryotic proteome is highly interconnected and that biological function frequently depends on the orchestrated action of many proteins. Perturbation of these functions or interactions can lead to various disease states and pharmacologic intervention can result in corrective therapies. The fact that proteins rarely act in isolation, but rather comprise complex machines that stably and/or transiently interact with many different partners at different times, demands the need for robust tools that allow comprehensive global analyses of these events...
2012: Current Chemical Genomics
Koichi Oshima, Takahiro Nagase, Kohsuke Imai, Shigeaki Nonoyama, Megumi Obara, Tomoyuki Mizukami, Hiroyuki Nunoi, Hirokazu Kanegane, Futoshi Kuribayashi, Shin Amemiya, Osamu Ohara
To evaluate the effects of genetic variations on mRNA splicing, we developed a minigene-based splicing assay using reporter genes encoding luciferase and the multifunctional HaloTag protein. In addition to conventional RT-PCR analysis, splicing events can be monitored in this system using two parameters: luciferase activity and signals derived from HaloTag-containing proteins bound to a fluorescent ligand following SDS-PAGE. The luciferase activity reflects the accumulated amounts of successfully spliced HaloTag-luciferase fusion products, whereas the amounts and sizes of HaloTag-containing proteins provide quantitative insights into precursor, correctly spliced, and aberrantly spliced mRNA species...
2012: Current Chemical Genomics
Jen-Chieh Tseng, Hélène A Benink, Mark G McDougall, Isabel Chico-Calero, Andrew L Kung
Many fluorescent sensors are currently available for in vitro bio-physiological microscopic imaging. The ability to label cells in living animals with these fluorescent sensors would help translate some of these assays into in vivo applications. To achieve this goal, the first step is to establish a method for selectively labeling target cells with exogenous fluorophores. Here we tested whether the HaloTag® protein tagging system provides specific labeling of xenograft tumors in living animals. After systemic delivery of fluorophore-conjugated ligands, we performed whole animal planar fluorescent imaging to determine uptake in tag-expressing HCT116 xenografts...
2012: Current Chemical Genomics
Xi Ai, Paul Fischer, Oksana C Palyha, Douglas Wisniewski, Brian Hubbard, Karen Akinsanya, Alison M Strack, Anka G Ehrhardt
The function of a particular protein is dependent upon its localization and milieu. The ability to track the "fate" of a protein is a valuable tool to elucidate its function. We present the use of HaloTag technology to study the localization and fate of human Proprotein Convertase Subtilisin-like Kexin type 9 (PCSK9).The role of PCSK9 in the regulation of circulating low density lipoprotein-cholesterol (LDL-c) levels is ascribed to binding of circulating PCSK9 to the LDL receptor (LDLR) and subsequent lysosomal degradation of LDLR...
2012: Current Chemical Genomics
Rui Ose, Osamu Oharaa, Takahiro Nagase
Protocadherin-24 (PCDH24) is linked to the suppression of tumor growth and the inhibition of cell proliferation in the colon cancer cell line HCT116. We previously observed that β-catenin is localized to the plasma membrane when PCDH24 is expressed in these cells, but the molecular mechanisms by which PCDH24 induces the membrane localization of β-catenin remain largely unknown. To clarify these mechanisms, we identified molecules that interact with ectopically expressed PCDH24 in HCT116 cells using a HaloTag® pull-down assay...
2012: Current Chemical Genomics
Scott N Peterson, Keehwan Kwon
Technological and methodological advances have been critical for the rapidly evolving field of proteomics. The development of fusion tag systems is essential for purification and analysis of recombinant proteins. The HaloTag is a 34 KDa monomeric protein derived from a bacterial haloalkane dehalogenase. The majority of fusion tags in use today utilize a reversible binding interaction with a specific ligand. The HaloTag system is unique in that it forms a covalent linkage to its chloroalkane ligand. This linkage permits attachment of the HaloTag to a variety of functional reporters, which can be used to label and immobilize recombinant proteins...
2012: Current Chemical Genomics
Mei Cong
No abstract text is available yet for this article.
2012: Current Chemical Genomics
Ken-Ichi Ohno, Chikara Nakata, Yoshihiro Sano, Fumiko Nishikawa, Satoshi Nishikawa, Hidetoshi Arakawa
Microchip electrophoresis (ME) coupled with fluorescence detection was used to estimate the binding activity of aptamer in each systematic evolution of ligands by exponential enrichment (SELEX) round for a target molecule. This approach is a non-radioisotopic, rapid and simple platform, and electrophoretic separation appears to be an effective technique for aptamers of oligonucleotide molecules. We tried to obtain gonadotropin-specific RNA aptamer by the above approach. As a result, the peaks of aptamers based on the conformational differences between them were separated and detected on the electropherograms...
2012: Current Chemical Genomics
Haifeng Eishingdrelo, Jidong Cai, Paul Weissensee, Praveen Sharma, Michael J Tocci, Paul S Wright
We have developed a novel cell-based protein-protein interaction assay method. The method relies on conversion of an inactive permuted luciferase containing a Tobacco Etch Virus protease (TEV) cleavage sequence fused onto protein (A) to an active luciferase upon interaction and cleavage by another protein (B) fused with the TEV protease. We demonstrate assay applicability for ligand-induced protein-protein interactions including G-protein coupled receptors, receptor tyrosine kinases and nuclear hormone receptors...
2011: Current Chemical Genomics
J Martin Herold, Lindsey A Ingerman, Cen Gao, Stephen V Frye
The recognition of methyl-lysine and -arginine residues on both histone and other proteins by specific "reader" elements is important for chromatin regulation, gene expression, and control of cell-cycle progression. Recently the crucial role of these reader proteins in cancer development and dedifferentiation has emerged, owing to the increased interest among the scientific community. The methyl-lysine and -arginine readers are a large and very diverse set of effector proteins and targeting them with small molecule probes in drug discovery will inevitably require a detailed understanding of their structural biology and mechanism of binding...
2011: Current Chemical Genomics
Barry M Zee, Nicolas L Young, Benjamin A Garcia
Histone post-translational modifications (PTMs) positively and negatively regulate gene expression, and are consequently a vital influence on the genomic profile of all eukaryotic species. The study of histone PTMs using classical methods in molecular biology, such as immunofluorescence and Western blotting, is challenging given the technical issues of the approaches, and chemical diversity and combinatorial patterns of the modifications. In light of these many technical limitations, mass spectrometry (MS) is emerging as the most unbiased and rigorous experimental platform to identify and quantify histone PTMs in a high-throughput manner...
2011: Current Chemical Genomics
Amy M Quinn, Anton Simeonov
The enzymes that regulate histone methylation states and the protein domains that recognize methylated histone residues have been implicated in a number of human diseases, including cancer, as a result of their ability to affect transcriptional changes by altering chromatin structure. These proteins are recognized as potential therapeutic targets for the treatment of diseases associated with epigenetic disruption; however, few inhibitors of their activity have been identified. The majority of histone demethylase and methyltransferase enzyme inhibitors have been discovered on the basis of their structural similarity to substrates or known inhibitors of enzymes with analogous mechanisms...
2011: Current Chemical Genomics
Matthieu Schapira
There are about fifty SET domain protein methyltransferases (PMTs) in the human genome, that transfer a methyl group from S-adenosyl-L-methionine (SAM) to substrate lysines on histone tails or other peptides. A number of structures in complex with cofactor, substrate, or inhibitors revealed the mechanisms of substrate recognition, methylation state specificity, and chemical inhibition. Based on these structures, we review the structural chemistry of SET domain PMTs, and propose general concepts towards the development of selective inhibitors...
2011: Current Chemical Genomics
Julianne M Yost, Ilia Korboukh, Feng Liu, Cen Gao, Jian Jin
Growing evidence suggests that protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) are associated with the development of various human diseases, including cancer, inflammation, and psychiatric disorders. Given the significant role of these proteins in human disease, efforts to discover selective small-molecule inhibitors of these enzymes are quickly gaining momentum. In this review, we focus on the recent progress in the discovery of selective PKMT and PRMT inhibitors...
2011: Current Chemical Genomics
Tom D Heightman
Abnormal levels of DNA methylation and/or histone modifications are observed in patients with a wide variety of chronic diseases. Methylation of lysines within histone tails is a key modification that contributes to increased gene expression or repression depending on the specific residue and degree of methylation, which is in turn controlled by the interplay of lysine methyl transferases and demethylases. Drugs that target these and other enzymes controlling chromatin modifications can modulate the expression of clusters of genes, potentially offering higher therapeutic efficacy than classical agents acting on downstream biochemical pathways that are susceptible to degeneracy...
2011: Current Chemical Genomics
Tim J Wigle
No abstract text is available yet for this article.
2011: Current Chemical Genomics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"