Read by QxMD icon Read

IEEE Transactions on Haptics

Ali Talasaz, Ana Luisa Trejos, Rajni Patel
The lack of haptic feedback in roboticsassisted surgery can result in tissue damage or accidental tool-tissue hits. This paper focuses on exploring the effect of haptic feedback via direct force reflection and visual presentation of force magnitude on performance during robotics-assisted minimally invasive surgery (RAMIS) suturing. For this purpose, a haptics-enabled dual-arm master-slave teleoperation system capable of measuring tool-tissue interaction forces in all 7 Degrees-of-Freedom (DOFs) was used. Two suturing tasks, tissue puncturing and knottightening, were chosen to assess user skills when suturing on phantom tissue...
October 12, 2016: IEEE Transactions on Haptics
Maria Dadarlat, Philip Sabes
Naturalistic control of brain-machine interfaces will require artificial proprioception, potentially delivered via intracortical microstimulation (ICMS).We have previously shown that multi-channel ICMS can guide a monkey reaching to unseen targets in a planar workspace. Here, we expand on that work, asking how ICMS is decoded into target angle and distance by analyzing the performance of a monkey when ICMS feedback was degraded. From the resulting pattern of errors, we found that the animal's estimate of target direction was consistent with a weighted circular-mean strategy-close to the optimal decoding strategy given the ICMS encoding...
October 11, 2016: IEEE Transactions on Haptics
Maria Laura D'Angelo, Ferdinando Cannella, Matteo Bianchi, Mariapaola D'Imperio, Edoardo Battaglia, Mattia Poggiani, Gianluca Rossi, Antonio Bicchi, Darwin G Caldwell
Understanding the mechanisms of human tactual perception represents a challenging task in haptics and humanoid robotics. A classic approach to tackle this issue is to accurately and exhaustively characterize the mechanical behaviour of human fingertip. The output of this characterization can then be exploited to drive the design of numerical models, which can be used to investigate in depth the mechanisms of human sensing. In this work, we present a novel integrated measurement technique and experimental set up for in vivo characterization of the deformation of the human fingertip at contact, in terms of contact area, force, deformation and pressure distribution...
September 29, 2016: IEEE Transactions on Haptics
Hongyi Xu, Jernej Barbic
We present an algorithm for fast continuous collision detection between points and signed distance fields, and demonstrate how to robustly use it for 6-DoF haptic rendering of contact between objects with complex geometry. Continuous collision detection is often needed in computer animation, haptics and virtual reality applications, but has so far only been investigated for polygon (triangular) geometry representations. We demonstrate how to robustly and continuously detect intersections between points and level sets of the signed distance field...
September 27, 2016: IEEE Transactions on Haptics
Jaeyoung Park, William Provancher, Hong Z Tan
We investigate the accuracy with which the haptic sharpness perception of a virtual edge is matched to that of a real edge and the effect of the virtual surface stiffness on the match. The perceived sharpness of virtual edges was estimated in terms of the point of subjective equality (PSE) when participants matched the sharpness of virtual edges to that of real edges with a radius of 0.5, 2.5 and 12.5 mm over a virtual stiffness range of 0.6 to 3.0 N/mm. The perceived sharpness of a real and a virtual edge of the same radius was significantly different under all but one of the experimental conditions and there was a significant effect of virtual surface stiffness on the accuracy of the match...
September 21, 2016: IEEE Transactions on Haptics
Sara Contu, Charmayne Hughes, Lorenzo Masia
The mechanisms that underlie the control of bimanual actions in which the two hands act separately to manipulate different objects (uncoupled independent control) has been well studied. In contrast, much less is known about how the central nervous system controls bimanual actions that require the two hands act cooperatively to manipulate a single object (dynamically coupled control). Furthermore, there is scant research into the manual lateralization and role assignment in the processing of visual and haptic feedback during dynamically coupled bimanual tasks...
September 16, 2016: IEEE Transactions on Haptics
Sofiane Ghenna, Eric Vezzoli, Christophe Giraud-Audine, Frederic Giraud, Michel Amberg, Betty Lemaire-Semail
In Variable Friction Tactile Displays, an ultrasonic standing wave can be used to reduce the friction coefficient between a user's finger sliding and a vibrating surface. However, by principle, the effect is limited by a saturation due to the contact mechanics, and very low friction levels require very high vibration amplitudes. Besides, to be effective, the user's finger has to move. We present a device which uses a travelling wave rather than a standing wave. We present a control that allows to realize such a travelling wave in a robust way, and thus can be implemented on various plane surfaces...
September 8, 2016: IEEE Transactions on Haptics
S Farokh Atashzar, Mahya Shahbazi, Christopher Ward, Olivia Samotus, Mehdi Delrobaei, Fariborz Rahimi, Jack Lee, Mallory Jackman, Mandar Jog, Rajni Patel
Abnormality of sensorimotor integration in the basal ganglia and cortex has been reported in the literature for patients with task-specific focal hand dystonia (FHD). In this study, we investigate the effect of manipulation of kinesthetic input in people living with writer's cramp disorder (a major form of FHD). For this purpose, severity of dystonia is studied for 11 participants while the symptoms of 7 participants have been tracked during 5 sessions of assessment and Botulinum toxin injection (BoNT-A) therapy (one of the current suggested therapies for dystonia)...
August 19, 2016: IEEE Transactions on Haptics
Tomohiro Amemiya, Koichi Hirota, Yasushi Ikei
The present study investigated whether a tactile flow created by a matrix of vibrators in a seat pan simultaneously presented with an optical flow in peripheral vision enhances the perceived forward velocity of self-motion. A brief tactile motion stimulus consisted of four successive rows of vibration, and the interstimulus onset between the tactile rows was varied to change the velocity of the tactile motion. The results show that the forward velocity of self-motion is significantly overestimated for rapid tactile flows and underestimated for slow ones, compared with optical flow alone or non-motion vibrotactile stimulation conditions...
August 5, 2016: IEEE Transactions on Haptics
Hsin-Ni Ho, Katsunari Sato, Scinob Kuroki, Junji Watanabe, Takashi Maeno, Shin'ya Nishida
Thermal displays have been applied in various haptic applications, from material simulation to interpersonal communication; however, there is insufficient knowledge about the temporal processing in human thermal sense to provide a knowledge basis for thermal display design. In this study, we investigated the physical-perceptual correspondence for dynamic thermal stimulation to shed a light on the temporal processing of human thermal sense. In the experiments, participants reported subjective timings of the temperature onset and temperature peak of continuous temperature changes applied to the thenar eminence...
July 28, 2016: IEEE Transactions on Haptics
Junsuk Kim, Yoon Gi Chung, Soon-Cheol Chung, Heinrich Bulthoff, Sung-Phil Kim
As the use of wearable haptic devices with vibrating alert features is commonplace, an understanding of the perceptual categorization of vibrotactile frequencies has become important. This understanding can be substantially enhanced by unveiling how neural activity represents vibrotactile frequency information. Using functional magnetic resonance imaging (fMRI), this study investigated categorical clustering patterns of the frequency-dependent neural activity evoked by vibrotactile stimuli with gradually changing frequencies from 20 to 200 Hz...
July 27, 2016: IEEE Transactions on Haptics
Juan Zarate, Herbert Shea
We present the design, fabrication, characterization and psychophysical testing of a scalable haptic display based on electromagnetic (EM) actuators. The display consists of a 4x4 array of taxels, each of which can be in a raised or a lowered position, thus generating different static configurations. One of the most challenging aspects when designing densely-packed arrays of EM actuators is obtaining large actuation forces while simultaneously generating only weak interactions between neighboring taxels. In this work we introduce a lightweight and effective magnetic shielding architecture...
July 19, 2016: IEEE Transactions on Haptics
Jeneva Cronin, Jing Wu, Kelly Collins, Devapratim Sarma, Rajesh Rao, Jeffrey Ojemann, Jared Olson
Cortical stimulation through electrocorticographic (ECoG) electrodes is a potential method for providing sensory feedback in future prosthetic and rehabilitative applications. Here we evaluate human subjects' ability to continuously modulate their motor behavior based on feedback from direct surface stimulation of the somatosensory cortex. Subjects wore a dataglove that measured their hand aperture position and received one of three stimuli over the hand sensory cortex based on their current hand position as compared to a target aperture position...
July 18, 2016: IEEE Transactions on Haptics
Tomohiro Amemiya, Hiroaki Gomi
Active touch sensing is known to facilitate the discrimination or recognition of the spatial properties of an object from the movement of tactile sensors on the skin and by integrating proprioceptive feedback about hand positions or motor commands related to ongoing hand movements. On the other hand, several studies have reported that tactile processing is suppressed by hand movement. Thus, it is unclear whether or not the active exploration of force direction by using hand or arm movement improves the perception of the force direction...
July 7, 2016: IEEE Transactions on Haptics
Aaron Plauche, Dario Villarreal, Robert D Gregg
Persons with amputations lack important senses from the amputated limb. With the absence of proprioception in the amputated leg, amputees have far more difficulty maintaining a natural gait with balance and stability. The biggest determinant of temporal limb behavior during locomotion is the phase in the gait cycle, which can be estimated using the center of pressure (COP) under the feet. We hypothesize that feedback from the COP of the prosthetic foot can help restore a more robust sense of phase in transfemoral (above-knee) amputees...
July 2016: IEEE Transactions on Haptics
Femke Elise van Beek, Dennis J F Heck, Henk Nijmeijer, Wouter M Bergmann Tiest, Astrid M L Kappers
In tele-operation systems, damping is often injected to guarantee system stability during contact with hard objects. In this study, we used psychophysical experiments to assess the effect of adding damping on the user's perception of object hardness. In Experiments 1 and 2, combinations of stiffness and damping were tested to assess their effect on perceived hardness. In both experiments, two tasks were used: an in-contact task, starting at the object's surface, and a contact-transition task, including a free-air movement...
July 2016: IEEE Transactions on Haptics
Carsten Neupert, Sebastian Matich, Nick Scherping, Mario Kupnik, Roland Werthschutzky, Christian Hatzfeld
In this paper, we develop possible realizations of pseudo-haptic feedback in teleoperation systems based on existing works for pseudo-haptic feedback in virtual reality and the intended applications. We derive four potential factors affecting the performance of haptic feedback (calculation operator, maximum displacement, offset force, and scaling factor), which are analyzed in three compliance identification experiments. First, we analyze the principle usability of pseudo-haptic feedback by comparing information transfer measures for teleoperation and direct interaction...
July 2016: IEEE Transactions on Haptics
Taku Nakamura, Akio Yamamoto
This paper proposes a visuo-haptic feedback system that can provide haptic feedback to multiple users on an LCD monitor using electrostatic adhesion and built-in capacitive sensors. The prototype system consists of a 40-inch LCD monitor, an ITO electrode sheet arranged on the monitor, and multiple contact pads for electrostatic adhesion. By applying low-frequency haptic voltage and high-frequency sensing voltage to each pad, the system realizes passive haptic feedback, as well as position sensing using the same components...
July 2016: IEEE Transactions on Haptics
Pingjun Xia
Product design and manufacturing simulation is a promising research and application area for haptics. By benefiting from its natural human-computer interaction and realistic force/torque feedback, haptics can change the traditional design and manufacturing approaches which are mainly based on physical mock-ups or CAD (Computer Aided Design) modes. This paper provides a detailed and comprehensive survey of haptics for product design and manufacturing simulation in the past 10 years, mainly from 2004-2014, including haptics for product design and shape modelling, haptics for machining simulation, and haptics for virtual assembly and maintenance simulation...
July 2016: IEEE Transactions on Haptics
Jeremy D Brown, Mackenzie K Shelley, Duane Gardner, Emmanuel A Gansallo, R Brent Gillespie
An important goal of haptic display is to make available the action/reaction relationships that define interactions between the body and the physical world. While in physical world interactions reaction cues invariably impinge on the same part of the body involved in action (reaction and action are colocated), a haptic interface is quite capable of rendering feedback to a separate body part than that used for producing exploratory actions (non-colocated action and reaction). This most commonly occurs with the use of vibrotactile display, in which a cutaneous cue has been substituted for a kinesthetic cue (a kind of sensory substitution)...
July 2016: IEEE Transactions on Haptics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"