Read by QxMD icon Read

Frontiers in Neuroinformatics

Jacob Huth, Timothée Masquelier, Angelo Arleo
We developed Convis , a Python simulation toolbox for large scale neural populations which offers arbitrary receptive fields by 3D convolutions executed on a graphics card. The resulting software proves to be flexible and easily extensible in Python, while building on the PyTorch library (The Pytorch Project, 2017), which was previously used successfully in deep learning applications, for just-in-time optimization and compilation of the model onto CPU or GPU architectures. An alternative implementation based on Theano (Theano Development Team, 2016) is also available, although not fully supported...
2018: Frontiers in Neuroinformatics
Ján Antolík, Andrew P Davison
Two trends have been unfolding in computational neuroscience during the last decade. First, a shift of focus to increasingly complex and heterogeneous neural network models, with a concomitant increase in the level of collaboration within the field (whether direct or in the form of building on top of existing tools and results). Second, a general trend in science toward more open communication, both internally, with other potential scientific collaborators, and externally, with the wider public. This multi-faceted development toward more integrative approaches and more intense communication within and outside of the field poses major new challenges for modelers, as currently there is a severe lack of tools to help with automatic communication and sharing of all aspects of a simulation workflow to the rest of the community...
2018: Frontiers in Neuroinformatics
Quanying Liu, Marco Ganzetti, Nicole Wenderoth, Dante Mantini
Resting state networks (RSNs) in the human brain were recently detected using high-density electroencephalography (hdEEG). This was done by using an advanced analysis workflow to estimate neural signals in the cortex and to assess functional connectivity (FC) between distant cortical regions. FC analyses were conducted either using temporal (tICA) or spatial independent component analysis (sICA). Notably, EEG-RSNs obtained with sICA were very similar to RSNs retrieved with sICA from functional magnetic resonance imaging data...
2018: Frontiers in Neuroinformatics
Jaeyoung Shin, Jinuk Kwon, Chang-Hwan Im
The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated...
2018: Frontiers in Neuroinformatics
Jakob Jordan, Tammo Ippen, Moritz Helias, Itaru Kitayama, Mitsuhisa Sato, Jun Igarashi, Markus Diesmann, Susanne Kunkel
State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity...
2018: Frontiers in Neuroinformatics
Yueying Zhou, Lishan Qiao, Weikai Li, Limei Zhang, Dinggang Shen
Functional connectivity (FC) network has been becoming an increasingly useful tool for understanding the cerebral working mechanism and mining sensitive biomarkers for neural/mental disease diagnosis. Currently, Pearson's Correlation (PC) is the simplest and most commonly used scheme in FC estimation. Despite its empirical effectiveness, PC only encodes the low-order (i.e., second-order) statistics by calculating the pairwise correlations between network nodes (brain regions), which fails to capture the high-order information involved in FC (e...
2018: Frontiers in Neuroinformatics
Hyemin Han, Joonsuk Park
Recent debates about the conventional traditional threshold used in the fields of neuroscience and psychology, namely P < 0.05, have spurred researchers to consider alternative ways to analyze fMRI data. A group of methodologists and statisticians have considered Bayesian inference as a candidate methodology. However, few previous studies have attempted to provide end users of fMRI analysis tools, such as SPM 12, with practical guidelines about how to conduct Bayesian inference. In the present study, we aim to demonstrate how to utilize Bayesian inference, Bayesian second-level inference in particular, implemented in SPM 12 by analyzing fMRI data available to public via NeuroVault...
2018: Frontiers in Neuroinformatics
Hans E Plesser
No abstract text is available yet for this article.
2017: Frontiers in Neuroinformatics
Jeyashree Krishnan, PierGianLuca Porta Mana, Moritz Helias, Markus Diesmann, Edoardo Di Napoli
Spiking neuronal networks are usually simulated with one of three main schemes: the classical time-driven and event-driven schemes, and the more recent hybrid scheme. All three schemes evolve the state of a neuron through a series of checkpoints: equally spaced in the first scheme and determined neuron-wise by spike events in the latter two. The time-driven and the hybrid scheme determine whether the membrane potential of a neuron crosses a threshold at the end of the time interval between consecutive checkpoints...
2017: Frontiers in Neuroinformatics
Javier Alegre-Cortés, Cristina Soto-Sánchez, Ana L Albarracín, Fernando D Farfán, Mikel Val-Calvo, José M Ferrandez, Eduardo Fernandez
Machine learning and artificial intelligence have strong roots on principles of neural computation. Some examples are the structure of the first perceptron, inspired in the retina, neuroprosthetics based on ganglion cell recordings or Hopfield networks. In addition, machine learning provides a powerful set of tools to analyze neural data, which has already proved its efficacy in so distant fields of research as speech recognition, behavioral states classification, or LFP recordings. However, despite the huge technological advances in neural data reduction of dimensionality, pattern selection, and clustering during the last years, there has not been a proportional development of the analytical tools used for Time-Frequency (T-F) analysis in neuroscience...
2017: Frontiers in Neuroinformatics
Fabien C Y Benureau, Nicolas P Rougier
Scientific code is different from production software. Scientific code, by producing results that are then analyzed and interpreted, participates in the elaboration of scientific conclusions. This imposes specific constraints on the code that are often overlooked in practice. We articulate, with a small example, five characteristics that a scientific code in computational science should possess: re-runnable, repeatable, reproducible, reusable, and replicable. The code should be executable (re-runnable) and produce the same result more than once (repeatable); it should allow an investigator to reobtain the published results (reproducible) while being easy to use, understand and modify (reusable), and it should act as an available reference for any ambiguity in the algorithmic descriptions of the article (replicable)...
2017: Frontiers in Neuroinformatics
László Szécsi, Ágota Kacsó, Günther Zeck, Péter Hantz
Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports...
2017: Frontiers in Neuroinformatics
Sreenath P Kyathanahally, Yun Wang, Vince D Calhoun, Gopikrishna Deshpande
Previous work using simultaneously acquired electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data has shown that the slow temporal dynamics of resting state brain networks (RSNs), e.g., default mode network (DMN), visual network (VN), obtained from fMRI are correlated with smoothed and down sampled versions of various EEG features such as microstates and band-limited power envelopes. Therefore, even though the down sampled and smoothed envelope of EEG gamma band power is correlated with fMRI fluctuations in the RSNs, it does not mean that the electrical substrates of the RSNs fluctuate with periods <100 ms...
2017: Frontiers in Neuroinformatics
Claudio Román, Miguel Guevara, Ronald Valenzuela, Miguel Figueroa, Josselin Houenou, Delphine Duclap, Cyril Poupon, Jean-François Mangin, Pamela Guevara
Human brain connectivity is extremely complex and variable across subjects. While long association and projection bundles are stable and have been deeply studied, short association bundles present higher intersubject variability, and few studies have been carried out to adequately describe the structure, shape, and reproducibility of these bundles. However, their analysis is crucial to understand brain function and better characterize the human connectome. In this study, we propose an automatic method to identify reproducible short association bundles of the superficial white matter, based on intersubject hierarchical clustering...
2017: Frontiers in Neuroinformatics
Christoforos Christoforou, Timothy C Papadopoulos, Fofi Constantinidou, Maria Theodorou
The ability to anticipate the population-wide response of a target audience to a new movie or TV series, before its release, is critical to the film industry. Equally important is the ability to understand the underlying factors that drive or characterize viewer's decision to watch a movie. Traditional approaches (which involve pilot test-screenings, questionnaires, and focus groups) have reached a plateau in their ability to predict the population-wide responses to new movies. In this study, we develop a novel computational approach for extracting neurophysiological electroencephalography (EEG) and eye-gaze based metrics to predict the population-wide behavior of movie goers...
2017: Frontiers in Neuroinformatics
Andoni Mujika, Peter Leškovský, Roberto Álvarez, Miguel A Otaduy, Gorka Epelde
This paper focusses on the simulation of the neural network of the Caenorhabditis elegans living organism, and more specifically in the modeling of the stimuli applied within behavioral experiments and the stimuli that is generated in the interaction of the C. elegans with the environment. To the best of our knowledge, all efforts regarding stimuli modeling for the C. elegansare focused on a single type of stimulus, which is usually tested with a limited subnetwork of the C. elegansneural system. In this paper, we follow a different approach where we model a wide-range of different stimuli, with more flexible neural network configurations and simulations in mind...
2017: Frontiers in Neuroinformatics
Danilo Benozzo, Emanuele Olivetti, Paolo Avesani
Brain effective connectivity aims to detect causal interactions between distinct brain units and it is typically studied through the analysis of direct measurements of the neural activity, e.g., magneto/electroencephalography (M/EEG) signals. The literature on methods for causal inference is vast. It includes model-based methods in which a generative model of the data is assumed and model-free methods that directly infer causality from the probability distribution of the underlying stochastic process. Here, we firstly focus on the model-based methods developed from the Granger criterion of causality, which assumes the autoregressive model of the data...
2017: Frontiers in Neuroinformatics
James F Cavanagh, Arthur Napolitano, Christopher Wu, Abdullah Mueen
Electroencephalographic (EEG) recordings are thought to reflect the network-wide operations of canonical neural computations, making them a uniquely insightful measure of brain function. As evidence of these virtues, numerous candidate biomarkers of different psychiatric and neurological diseases have been advanced. Presumably, we would only need to apply powerful machine-learning methods to validate these ideas and provide novel clinical tools. Yet, the reality of this advancement is more complex: the scale of data required for robust and reliable identification of a clinical biomarker transcends the ability of any single laboratory...
2017: Frontiers in Neuroinformatics
Diego Castillo-Barnes, Ignacio Peis, Francisco J Martínez-Murcia, Fermín Segovia, Ignacio A Illán, Juan M Górriz, Javier Ramírez, Diego Salas-Gonzalez
A wide range of segmentation approaches assumes that intensity histograms extracted from magnetic resonance images (MRI) have a distribution for each brain tissue that can be modeled by a Gaussian distribution or a mixture of them. Nevertheless, intensity histograms of White Matter and Gray Matter are not symmetric and they exhibit heavy tails. In this work, we present a hidden Markov random field model with expectation maximization (EM-HMRF) modeling the components using the α-stable distribution. The proposed model is a generalization of the widely used EM-HMRF algorithm with Gaussian distributions...
2017: Frontiers in Neuroinformatics
Antonio Fernández-Caballero, Elena Navarro, Patricia Fernández-Sotos, Pascual González, Jorge J Ricarte, José M Latorre, Roberto Rodriguez-Jimenez
This perspective paper faces the future of alternative treatments that take advantage of a social and cognitive approach with regards to pharmacological therapy of auditory verbal hallucinations (AVH) in patients with schizophrenia. AVH are the perception of voices in the absence of auditory stimulation and represents a severe mental health symptom. Virtual/augmented reality (VR/AR) and brain computer interfaces (BCI) are technologies that are growing more and more in different medical and psychological applications...
2017: Frontiers in Neuroinformatics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"