Read by QxMD icon Read

Frontiers in Systems Neuroscience

Chien-Cheng Chen, Christopher J Bockisch, Dominik Straumann, Melody Ying-Yu Huang
Spontaneous eye movements of zebrafish larvae in the dark consist of centrifugal saccades that move the eyes from a central to an eccentric position and postsaccadic centripetal drifts. In a previous study, we showed that the fitted single-exponential time constants of the postsaccadic drifts are longer in the temporal-to-nasal (T->N) direction than in the nasal-to-temporal (N->T) direction. In the present study, we further report that saccadic peak velocities are higher and saccadic amplitudes are larger in the N->T direction than in the T->N direction...
2016: Frontiers in Systems Neuroscience
Udo A Ernst, Alina Schiffer, Malte Persike, Günter Meinhardt
Processing natural scenes requires the visual system to integrate local features into global object descriptions. To achieve coherent representations, the human brain uses statistical dependencies to guide weighting of local feature conjunctions. Pairwise interactions among feature detectors in early visual areas may form the early substrate of these local feature bindings. To investigate local interaction structures in visual cortex, we combined psychophysical experiments with computational modeling and natural scene analysis...
2016: Frontiers in Systems Neuroscience
Miguel Aguilera, Manuel G Bedia, Xabier E Barandiaran
The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task...
2016: Frontiers in Systems Neuroscience
Luis H Favela
No abstract text is available yet for this article.
2016: Frontiers in Systems Neuroscience
Reza Farivar, Danny Michaud-Landry
Measurements of the fast and precise movements of the eye-critical to many vision, oculomotor, and animal behavior studies-can be made non-invasively by video oculography. The protocol here describes the construction and operation of a research-grade video oculography system with ~0.1° precision over the full typical viewing range at over 450 Hz with tight synchronization with stimulus onset. The protocol consists of three stages: (1) system assembly, (2) calibration for both cooperative, and for minimally cooperative subjects (e...
2016: Frontiers in Systems Neuroscience
Maria P Bucci, Hayette Soufi, Philippe Villeneuve, Lucile Colleville, Emmanuel Bui-Quoc, Cynthia Lions
The objective of this study is to examine the role of proprioception in postural balance in children with strabismus before and after realignment of their visual axes by eye surgery. Postural recordings were made with the TechnoConcept® force platform in 23 children. Several conditions were studied, whether the subjects had both eyes open, or either the dominant or the non-dominant eye open, without and with foam pads of 4 mm underfoot. Recordings were performed before and after strabismus surgery. The surface area, the length and the mean speed of the center of pressure (CoP) were analyzed...
2016: Frontiers in Systems Neuroscience
Simon D Klapper, Anka Swiersy, Ernst Bamberg, Volker Busskamp
Optogenetics is the use of genetically encoded light-activated proteins to manipulate cells in a minimally invasive way using light. The most prominent example is channelrhodopsin-2 (ChR2), which allows the activation of electrically excitable cells via light-dependent depolarization. The combination of ChR2 with hyperpolarizing-light-driven ion pumps such as the Cl(-) pump halorhodopsin (NpHR) enables multimodal remote control of neuronal cells in culture, tissue, and living animals. Very soon, it became obvious that this method offers a chance of gene therapy for many diseases affecting vision...
2016: Frontiers in Systems Neuroscience
Rodrigo Araneda, Laurent A Renier, Philippe Rombaux, Isabel Cuevas, Anne G De Volder
Over the last decade, functional brain imaging has provided insight to the maturation processes and has helped elucidate the pathophysiological mechanisms involved in brain plasticity in the absence of vision. In case of congenital blindness, drastic changes occur within the deafferented "visual" cortex that starts receiving and processing non visual inputs, including olfactory stimuli. This functional reorganization of the occipital cortex gives rise to compensatory perceptual and cognitive mechanisms that help blind persons achieve perceptual tasks, leading to superior olfactory abilities in these subjects...
2016: Frontiers in Systems Neuroscience
Elliot Murphy
No abstract text is available yet for this article.
2016: Frontiers in Systems Neuroscience
Peng Yuan, Vincent Koppelmans, Patricia A Reuter-Lorenz, Yiri E De Dios, Nichole E Gadd, Scott J Wood, Roy Riascos, Igor S Kofman, Jacob J Bloomberg, Ajitkumar P Mulavara, Rachael D Seidler
Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the underlying brain activation changed as a function of HDBR...
2016: Frontiers in Systems Neuroscience
Michelle Armenta Salas, Stephen I Helms Tillery
The neural mechanisms that take place during learning and adaptation can be directly probed with brain-machine interfaces (BMIs). We developed a BMI controlled paradigm that enabled us to enforce learning by introducing perturbations which changed the relationship between neural activity and the BMI's output. We introduced a uniform perturbation to the system, through a visuomotor rotation (VMR), and a non-uniform perturbation, through a decorrelation task. The controller in the VMR was essentially unchanged, but produced an output rotated at 30° from the neurally specified output...
2016: Frontiers in Systems Neuroscience
Joyce Keifer, Cliff H Summers
Current trends in neuroscience research have moved toward a reliance on rodent animal models to study most aspects of brain function. Such laboratory-reared animals are highly inbred, have been disengaged from their natural environments for generations and appear to be of limited predictive value for successful clinical outcomes. In this Perspective article, we argue that research on a rich diversity of animal model systems is fundamental to new discoveries in evolutionarily conserved core physiological and molecular mechanisms that are the foundation of human brain function...
2016: Frontiers in Systems Neuroscience
Allison Fitch, Hayley Smith, Sylvia B Guillory, Zsuzsa Kaldy
Current neuroscientific models describe the functional neural architecture of visual working memory (VWM) as an interaction of the frontal-parietal control network and more posterior areas in the ventral visual stream (Jonides et al., 2008; D'Esposito and Postle, 2015; Eriksson et al., 2015). These models are primarily based on adult neuroimaging studies. However, VWM undergoes significant development in infancy and early childhood, and the goal of this mini-review is to examine how recent findings from neuroscientific studies of early VWM development can be reconciled with this model...
2016: Frontiers in Systems Neuroscience
Lars E Forsberg, Lars H Bonde, Michael A Harvey, Per E Roland
Most neurons have a threshold separating the silent non-spiking state and the state of producing temporal sequences of spikes. But neurons in vivo also have a second threshold, found recently in granular layer neurons of the primary visual cortex, separating spontaneous ongoing spiking from visually evoked spiking driven by sharp transients. Here we examine whether this second threshold exists outside the granular layer and examine details of transitions between spiking states in ferrets exposed to moving objects...
2016: Frontiers in Systems Neuroscience
Erin D Bigler
The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods...
2016: Frontiers in Systems Neuroscience
Ivan N Pigarev, Ekaterina V Levichkina
Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances...
2016: Frontiers in Systems Neuroscience
Kurt Wisner, Boris Odintsov, Daniel Brozoski, Thomas J Brozoski
No abstract text is available yet for this article.
2016: Frontiers in Systems Neuroscience
Patrice Voss, Flamine Alary, Latifa Lazzouni, C E Chapman, Rachel Goldstein, Pierre Bourgoin, Franco Lepore
In a previous behavioral study, it was shown that early blind individuals were superior to sighted ones in discriminating two-dimensional (2D) tactile angle stimuli. The present study was designed to assess the neural substrate associated with a haptic 2D angle discrimination task in both sighted and blind individuals. Subjects performed tactile angle size discriminations in order to investigate whether the pattern of crossmodal occipital recruitment was lateralized as a function of the stimulated hand. Task-elicited activations were also compared across different difficulty levels to ascertain the potential modulatory role of task difficulty on crossmodal processing within occipital areas...
2016: Frontiers in Systems Neuroscience
Jianli Sun, Kimberle M Jacobs
Mitochondria are central to cell survival and Ca(2+) homeostasis due to their intracellular buffering capabilities. Mitochondrial dysfunction resulting in mitochondrial permeability transition pore (mPTP) opening has been reported after mild traumatic brain injury (mTBI). Cyclosporine A provides protection against the mPTP opening through its interaction with cyclophilin-D (CypD). A recent study has found that the extent of axonal injury after mTBI was diminished in neocortex in cyclophilin-D knockout (CypDKO) mice...
2016: Frontiers in Systems Neuroscience
Jay Schulkin
Running is not unique to humans, but it is seemingly a basic human capacity. This article addresses the evolutionary origins of humans running long distances, the basic physical capability of running, and the neurogenesis of aerobic fitness. This article more specifically speaks to the conditions that set the stage for the act of running, and then looks at brain expression, and longer-term consequences of running within a context of specific morphological features and diverse information molecules that participate in our capacity for running and sport...
2016: Frontiers in Systems Neuroscience
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"