Read by QxMD icon Read

Current Protocols in Stem Cell Biology

David P Santos, Evangelos Kiskinis, Kevin Eggan, Florian T Merkle
Genome editing of human pluripotent stem cells (hPSCs) with the CRISPR/Cas9 system has the potential to revolutionize hPSC-based disease modeling, drug screening, and transplantation therapy. Here, we aim to provide a single resource to enable groups, even those with limited experience with hPSC culture or the CRISPR/Cas9 system, to successfully perform genome editing. The methods are presented in detail and are supported by a theoretical framework to allow for the incorporation of inevitable improvements in the rapidly evolving gene-editing field...
August 17, 2016: Current Protocols in Stem Cell Biology
Mandana Arbab, Richard I Sherwood
CRISPR/Cas9-gene editing has emerged as a revolutionary technology to easily modify specific genomic loci by designing complementary sgRNA sequences and introducing these into cells along with Cas9. Self-cloning CRISPR/Cas9 (scCRISPR) uses a self-cleaving palindromic sgRNA plasmid (sgPal) that recombines with short PCR-amplified site-specific sgRNA sequences within the target cell by homologous recombination to circumvent the process of sgRNA plasmid construction. Through this mechanism, scCRISPR enables gene editing within 2 hr once sgRNA oligos are available, with high efficiency equivalent to conventional sgRNA targeting: >90% gene knockout in both mouse and human embryonic stem cells and cancer cell lines...
2016: Current Protocols in Stem Cell Biology
Hong Yu Chen, Hong-Kee Tan, Yuin-Han Loh
Human-induced pluripotent stem cells (hiPSCs) have great potential for future use in therapeutic regenerative medicine. Based on the current protocol for deriving hiPSCs, invasive procedures such as skin biopsies and venipuncture are required for obtaining donor samples. Herein, we present a detailed protocol for deriving hiPSCs from human finger-prick (FP) blood. In this method, the transgene-free hiPSCs can be easily generated from only 10 µl of FP blood. The finger-pricked iPSCs (FPiPSCs) show all the pluripotency markers and can be easily differentiated into various cell lineages...
2016: Current Protocols in Stem Cell Biology
Dinesh Upadhya, Bharathi Hattiangady, Geetha A Shetty, Gabriele Zanirati, Maheedhar Kodali, Ashok K Shetty
Grafting of neural stem cells (NSCs) or GABA-ergic progenitor cells (GPCs) into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts >30% of temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). On the other hand, GPCs could be generated from the medial and lateral ganglionic eminences of the embryonic brain and from hESCs and hiPSCs...
2016: Current Protocols in Stem Cell Biology
Araceli Espinosa-Jeffrey, Bruno Blanchi, Juan Carlos Biancotti, Shalini Kumar, Megumi Hirose, Berhan Mandefro, Dodanim Talavera-Adame, Nissim Benvenisty, Jean de Vellis
Here we document three highly reproducible protocols: (1) a culture system for the derivation of human oligodendrocytes (OLs) from human induced pluripotent stem cells (hiPS) and their further maturation-our protocol generates viral- and integration-free OLs that efficiently commit and move forward in the OL lineage, recapitulating all the steps known to occur during in vivo development; (2) a method for the isolation, propagation and maintenance of neural stem cells (NSCs); and (3) a protocol for the production, isolation, and maintenance of OLs from perinatal rodent and human brain-derived NSCs...
2016: Current Protocols in Stem Cell Biology
David G Kent, Brad J Dykstra, Connie J Eaves
Hematopoietic stem cells with long-term repopulating activity can now be routinely obtained at purities of 40% to 50% from suspensions of adult mouse bone marrow. Here we describe robust protocols for both their isolation as CD45(+) EPCR(+) CD150(+) CD48(-) (ESLAM) cells using multiparameter cell sorting and for tracking their clonal growth and differentiation activity in irradiated mice transplanted with single ESLAM cells. The simplicity of these procedures makes them attractive for characterizing the molecular and biological properties of individual hematopoietic stem cells with unprecedented power and precision...
2016: Current Protocols in Stem Cell Biology
Santosh Mathapati, Richard Siller, Agata A R Impellizzeri, Max Lycke, Karianne Vegheim, Runar Almaas, Gareth J Sullivan
Hepatocyte-like cells (HLCs) generated in vitro from human pluripotent stem cells (hPSCs) provide an invaluable resource for basic research, regenerative medicine, drug screening, toxicology, and modeling of liver disease and development. This unit describes a small-molecule-driven protocol for in vitro differentiation of hPSCs into HLCs without the use of growth factors. hPSCs are coaxed through a developmentally relevant route via the primitive streak to definitive endoderm (DE) using the small molecule CHIR99021 (a Wnt agonist), replacing the conventional growth factors Wnt3A and activin A...
2016: Current Protocols in Stem Cell Biology
Marc Hild, Aron B Jaffe
The ability of human airway basal cells to serve as progenitor cells in the conducting airway makes them an attractive target in a number of respiratory diseases associated with epithelial remodeling. This unit describes a protocol for the culture of 'bronchospheres', three-dimensional (3-D) organoids that are derived from primary human airway basal cells. Mature bronchospheres are composed of functional multi-ciliated cells, mucin-producing goblet cells, and airway basal cells. In contrast to existing methods used for the culture of well-differentiated human airway epithelial cells, bronchospheres do not require growth on a permeable support and can be cultured in 384-well assay plates...
2016: Current Protocols in Stem Cell Biology
Roberto Gramignoli, Raghuraman C Srinivasan, Kristina Kannisto, Stephen C Strom
Different cell types can be isolated from human placental tissues, and some have been reported to retain phenotypic plasticity and characteristics that make them a promising source of cells for regenerative medicine. Among these are human amnion epithelial cells (hAECs). Adoption of current good manufacturing practices (cGMP) and enhanced quality control is essential when isolating hAECs in order to deliver a safe and effective cellular product for clinical purposes. This unit describes a detailed protocol for selective isolation of hAECs from human term placenta with little to no contamination by other cell types...
2016: Current Protocols in Stem Cell Biology
Luke A Wiley, David C Beebe, Robert F Mullins, Edwin M Stone, Budd A Tucker
This unit describes a protocol for embedding, sectioning, and immunocytochemical analysis of pluripotent stem cell-derived 3-D organoids. Specifically, we describe a method to embed iPSC-derived retinal cups in low-melt agarose, acquire thick sections using a vibratome tissue slicer, and perform immunohistochemical analysis. This method includes an approach for antibody labeling that minimizes the amount of antibody needed for individual experiments and that utilizes large-volume washing to increase the signal-to-noise ratio, allowing for clean, high-resolution imaging of developing cell types...
2016: Current Protocols in Stem Cell Biology
Megan D Hoban, Zulema Romero, Gregory J Cost, Matthew Mendel, Michael Holmes, Donald B Kohn
This unit describes the protocol for the delivery of reagents for targeted genome editing to CD34(+) hematopoietic stem/progenitor cells (HSPCs). Specifically, this unit focuses on the process of thawing and pre-stimulating CD34(+) HSPCs, as well as the details of their electroporation with in vitro-transcribed mRNA-encoding site-specific nucleases [in this case zinc-finger nucleases (ZFNs)]. In addition, discussed is delivery of a gene editing donor template in the form of an oligonucleotide or integrase-defective lentiviral vector (IDLV)...
2016: Current Protocols in Stem Cell Biology
Diana L Carlone
Lineage-tracing has been used for decades to establish cell fate maps during development. Recently, with the advent of genetic lineage-tracing techniques (employing Cre-lox recombination), it has been possible to permanently mark progenitor/stem cell populations within somatic tissues. In addition, pulse-chase studies have shown that only stem cells are capable of producing labeled progeny after an extensive period of chase. This unit focuses on the protocols used to target putative adult stem cells in vivo...
2016: Current Protocols in Stem Cell Biology
Michaela Rothová, Jurriaan J Hölzenspies, Alessandra Livigni, Santiago Nahuel Villegas, Joshua M Brickman
Anterior definitive endoderm (ADE), the ventral foregut precursor, is both an important embryonic signaling center and a unique multipotent precursor of liver, pancreas, and other organs. Here, a method is described for the differentiation of mouse embryonic stem cells (mESCs) to definitive endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (embryoid body) culture or in a serum-free adherent monolayer culture. ESC-derived ADE cells are committed to endodermal fates and can undergo further differentiation in vitro towards ventral foregut derivatives...
2016: Current Protocols in Stem Cell Biology
Christian Unger, Ulrika Felldin, Sergey Rodin, Agneta Nordenskjöld, Sirac Dilber, Outi Hovatta
After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures...
2016: Current Protocols in Stem Cell Biology
Abhilasha Tiwari, Melinda L Tursky, Lakshmi P Nekkanti, Graham Jenkin, Mark A Kirkland, Gopal Pande
Umbilical cord blood (UCB) is one of the richest sources for hematopoietic stem/progenitor cells (HSPCs), with more than 3000 transplantations performed each year for the treatment of leukemia and other bone marrow, immunological, and hereditary diseases. However, transplantation of single cord blood units is mostly restricted to children, due to the limited number of HSPC per unit. This unit develops a method to increase the number of HSPCs in laboratory conditions by using cell-free matrices from bone marrow cells that mimic 'human-body-niche-like' conditions as biological scaffolds to support the ex vivo expansion of HSPCs...
2016: Current Protocols in Stem Cell Biology
William T Hendriks, Xin Jiang, Laurence Daheron, Chad A Cowan
Using custom-engineered nuclease-mediated genome editing, such as Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) RNA-guided Cas9 nucleases, human pluripotent stem cell (hPSC) lines with knockout or mutant alleles can be generated and differentiated into various cell types. This strategy of genome engineering in hPSCs will prove invaluable for studying human biology and disease. Here, we provide a detailed protocol for design and construction of TALEN and CRISPR vectors, testing of their nuclease activity, and delivery of TALEN or CRISPR vectors into hPSCs...
August 3, 2015: Current Protocols in Stem Cell Biology
Susan M Byrne, George M Church
CRISPR/Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion/replacement efficiencies from 0...
2015: Current Protocols in Stem Cell Biology
Caitlin Clunie-O'Connor, Anke M Smits, Charalambos Antoniades, Angela J Russell, Derek M Yellon, Marie-José Goumans, Paul R Riley
To develop therapeutic strategies for the regeneration of lost heart muscle after myocardial infarction (MI), a source of functional new muscle cells and associated coronary vessels must be identified. The epicardium is a source of several cardiovascular cell types during heart development and is widely regarded as a resident progenitor population, which becomes dormant during adulthood. In adult mice, MI induces epicardial reactivation characterized by an upregulation of fetal genes and subsequent epicardium derived cell (EPDC) proliferation, migration, and differentiation...
2015: Current Protocols in Stem Cell Biology
Flora Clément, Helen He Zhu, Wei-Qiang Gao, Emmanuel Delay, Véronique Maguer-Satta
Here, a protocol to quantify epithelial early common progenitor/stem cells grown as spheres in non-adherent culture conditions is described. This protocol is based on the combination of two functional tests: the sphere assay to maintain and enrich early progenitor/stem cells, and the epithelial colony-forming cells (E-CFC) assay to identify and quantify further differentiated epithelial progenitors. Primary spheres mainly contain progenitors and rare stem/early common progenitor cells while secondary and tertiary spheres contain progenitor cells derived from the early common progenitor/stem cell population maintained through passages and partially differentiated...
2015: Current Protocols in Stem Cell Biology
Faranak Fattahi, Lorenz Studer, Mark J Tomishima
Neural crest (NC) cells are migratory multipotent progenitors that delaminate from the neural tube during embryonic development and give rise to various cell types in different organs. These cells are a transient embryonic cell population and therefore difficult to obtain from primary sources. Deriving NC from human pluripotent stem cells offers an alternative way to provide large-scale human NC cells for developmental and disease-related studies. In recent years, the protocols to make these cells have matured, incorporating the efficient conversion of pluripotent stem cells to neural cells through dual SMAD inhibition and early Wnt activation to increase the yield of NC cells...
2015: Current Protocols in Stem Cell Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"