journal
MENU ▼
Read by QxMD icon Read
search

Microbial Biotechnology

journal
https://www.readbyqxmd.com/read/28425176/polyhydroxyalkanoate-associated-phasins-as-phylogenetically-heterogeneous-multipurpose-proteins
#1
REVIEW
Beatriz Maestro, Jesús M Sanz
Polyhydroxyalkanoates (PHAs) are natural polyesters of increasing biotechnological importance that are synthesized by many prokaryotic organisms as carbon and energy storage compounds in limiting growth conditions. PHAs accumulate intracellularly in form of inclusion bodies that are covered with a proteinaceous surface layer (granule-associated proteins or GAPs) conforming a network-like surface of structural, metabolic and regulatory polypeptides, and configuring the PHA granules as complex and well-organized subcellular structures that have been designated as 'carbonosomes'...
April 20, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28425205/engineering-the-xylose-catabolizing-dahms-pathway-for-production-of-poly-d-lactate-co-glycolate-and-poly-d-lactate-co-glycolate-co-d-2-hydroxybutyrate-in-escherichia-coli
#2
So Young Choi, Won Jun Kim, Seung Jung Yu, Si Jae Park, Sung Gap Im, Sang Yup Lee
Poly(lactate-co-glycolate), PLGA, is a representative synthetic biopolymer widely used in medical applications. Recently, we reported one-step direct fermentative production of PLGA and its copolymers by metabolically engineered Escherichia coli from xylose and glucose. In this study, we report development of metabolically engineered E. coli strains for the production of PLGA and poly(d-lactate-co-glycolate-co-d-2-hydroxybutyrate) having various monomer compositions from xylose as a sole carbon source. To achieve this, the metabolic flux towards Dahms pathway was modulated using five different synthetic promoters for the expression of Caulobacter crescentus XylBC...
April 19, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28417606/caboxamycin-biosynthesis-pathway-and-identification-of-novel-benzoxazoles-produced-by-cross-talk-in-streptomyces-sp-ntk-937
#3
Armando A Losada, Carolina Cano-Prieto, Raúl García-Salcedo, Alfredo F Braña, Carmen Méndez, José A Salas, Carlos Olano
Streptomyces sp. NTK937, producer of benzoxazole antibiotic caboxamycin, produces in addition a methyl ester derivative, O-methylcaboxamycin. Caboxamycin cluster, comprising one regulatory and nine structural genes, has been delimited, and each gene has been individually inactivated to demonstrate its role in the biosynthetic process. The O-methyltransferase potentially responsible for O-methylcaboxamycin synthesis would reside outside this cluster. Five of the genes, cbxR, cbxA, cbxB, cbxD and cbxE, encoding a SARP transcriptional regulator, salicylate synthase, 3-oxoacyl-ACP-synthase, ACP and amidohydrolase, respectively, have been found to be essential for caboxamycin biosynthesis...
April 18, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28401736/microbiome-yarns-microbiomology-of-winter-rosy-face
#4
EDITORIAL
Kenneth Timmis, Franziska Jebok
No abstract text is available yet for this article.
April 12, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28401691/biocatalysis-as-a-green-route-for-recycling-the-recalcitrant-plastic-polyethylene-terephthalate
#5
Ren Wei, Wolfgang Zimmermann
Biocatalysis can enable a closed-loop recycling of post-consumer PET waste.
April 12, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28401747/dynamics-of-mono-and-dual-species-biofilm-formation-and-interactions-between-staphylococcus-aureus-and-gram-negative-bacteria
#6
Jitka Makovcova, Vladimir Babak, Pavel Kulich, Josef Masek, Michal Slany, Lenka Cincarova
Microorganisms are not commonly found in the planktonic state but predominantly form dual- and multispecies biofilms in almost all natural environments. Bacteria in multispecies biofilms cooperate, compete or have neutral interactions according to the involved species. Here, the development of mono- and dual-species biofilms formed by Staphylococcus aureus and other foodborne pathogens such as Salmonella enterica subsp. enterica serovar Enteritidis, potentially pathogenic Raoultella planticola and non-pathogenic Escherichia coli over the course of 24, 48 and 72 h was studied...
April 11, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28401700/silica-immobilization-of-geobacter-sulfurreducens-for-constructing-ready-to-use-artificial-bioelectrodes
#7
Marta Estevez-Canales, David Pinto, Thibaud Coradin, Christel Laberty-Robert, Abraham Esteve-Núñez
Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready-to-use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibres. Viability test confirmed that the majority of bacteria (ca. 70 ± 5%) survived the encapsulation process in silica and that cell density did not increase in 96 h...
April 11, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28401676/regulation-of-solvent-tolerance-in-pseudomonas-putida-s12-mediated-by-mobile-elements
#8
Rohola Hosseini, Jannis Kuepper, Sebastian Koebbing, Lars M Blank, Nick Wierckx, Johannes H de Winde
Organic solvent-tolerant bacteria are outstanding and versatile hosts for the bio-based production of a broad range of generally toxic aromatic compounds. The energetically costly solvent tolerance mechanisms are subject to multiple levels of regulation, involving among other mobile genetic elements. The genome of the solvent-tolerant Pseudomonas putida S12 contains many such mobile elements that play a major role in the regulation and adaptation to various stress conditions, including the regulation of expression of the solvent efflux pump SrpABC...
April 11, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28393499/a-growth-and-bioluminescence-based-bioreporter-for-the-in%C3%A2-vivo-detection-of-novel-biocatalysts
#9
Teunke van Rossum, Aleksandra Muras, Marco J J Baur, Sjoerd C A Creutzburg, John van der Oost, Servé W M Kengen
The use of bioreporters in high-throughput screening for small molecules is generally laborious and/or expensive. The technology can be simplified by coupling the generation of a desired compound to cell survival, causing only positive cells to stay in the pool of generated variants. Here, a dual selection/screening system was developed for the in vivo detection of novel biocatalysts. The sensor part of the system is based on the transcriptional regulator AraC, which controls expression of both a selection reporter (LeuB or KmR; enabling growth) for rapid reduction of the initially large library size and a screening reporter (LuxCDABE; causing bioluminescence) for further quantification of the positive variants...
April 10, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28393465/the-do-it-yourself-movement-as-a-source-of-innovation-in-biotechnology-and-much-more
#10
EDITORIAL
Víctor de Lorenzo, Markus Schmidt
No abstract text is available yet for this article.
April 9, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28387006/novel-candidatus-liberibacter-species-identified-in-the-australian-eggplant-psyllid-acizzia-solanicola
#11
Jacqueline Morris, Jason Shiller, Rachel Mann, Grant Smith, Alan Yen, Brendan Rodoni
A novel candidate species of the liberibacter genus, 'Candidatus Liberibacter brunswickensis' (CLbr), was identified in the Australian eggplant psyllid, Acizzia solanicola. This is the first discovery of a species belonging to the liberibacter genus in Australia and the first report of a liberibacter species in the psyllid genus Acizzia. This new candidate liberibacter species has not been associated with plant disease, unlike other psyllid-vectored species in the genus including 'Candidatus Liberibacter asiaticus' (CLas), 'Candidatus Liberibacter africanus' (CLaf) and 'Ca...
April 7, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28378385/functional-characterization-of-lotp-from-liberibacter-asiaticus
#12
Flavia Loto, Janelle F Coyle, Kaylie A Padgett, Fernando A Pagliai, Christopher L Gardner, Graciela L Lorca, Claudio F Gonzalez
Liberibacter asiaticus is an unculturable parasitic bacterium of the alphaproteobacteria group hosted by both citrus plants and a psyllid insect vector (Diaphorina citri). In the citrus tree, the bacteria thrive only inside the phloem, causing a systemically incurable and deadly plant disease named citrus greening or Huanglongbing. Currently, all commercial citrus cultivars in production are susceptible to L. asiaticus, representing a serious threat to the citrus industry worldwide. The technical inability to isolate and culture L...
April 5, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28371389/coarse-graining-bacteria-colonies-for-modelling-critical-solute-distributions-in-picolitre-bioreactors-for-bacterial-studies-on-single-cell-level
#13
Christoph Westerwalbesloh, Alexander Grünberger, Wolfgang Wiechert, Dietrich Kohlheyer, Eric von Lieres
Microfluidic single-cell bioreactors have found widespread application to investigate growth and gene expression of microbial model organisms, but yet there are few attempts to systematically characterize different design and cultivation concepts. Quantitative measurements of critical solute concentrations, e.g. limiting nutrients, are not yet feasible within the typical volumes in the range of picolitres. A way to gain new insights about the mass transport within those volumes is by simulation, but the complex geometry resulting from the multitude of cells within a colony leads to time and resource consuming computational challenges...
April 3, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28371373/microbial-enzymes-for-the-recycling-of-recalcitrant-petroleum-based-plastics-how-far-are-we
#14
REVIEW
Ren Wei, Wolfgang Zimmermann
Petroleum-based plastics have replaced many natural materials in their former applications. With their excellent properties, they have found widespread uses in almost every area of human life. However, the high recalcitrance of many synthetic plastics results in their long persistence in the environment, and the growing amount of plastic waste ending up in landfills and in the oceans has become a global concern. In recent years, a number of microbial enzymes capable of modifying or degrading recalcitrant synthetic polymers have been identified...
March 28, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28332326/fermentation-of-glycerol-by-a-newly-discovered-anaerobic-bacterium-adding-value-to-biodiesel-production
#15
María Hidalgo, Elena Puerta-Fernández
No abstract text is available yet for this article.
March 23, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28322023/caldicellulosiruptor-saccharolyticus-transcriptomes-reveal-consequences-of-chemical-pretreatment-and-genetic-modification-of-lignocellulose
#16
Sara E Blumer-Schuette, Jeffrey V Zurawski, Jonathan M Conway, Piyum Khatibi, Derrick L Lewis, Quanzi Li, Vincent L Chiang, Robert M Kelly
Recalcitrance of plant biomass is a major barrier for commercially feasible cellulosic biofuel production. Chemical and enzymatic assays have been developed to measure recalcitrance and carbohydrate composition; however, none of these assays can directly report which polysaccharides a candidate microbe will sense during growth on these substrates. Here, we propose using the transcriptomic response of the plant biomass-deconstructing microbe, Caldicellulosiruptor saccharolyticus, as a direct measure of how suitable a sample of plant biomass may be for fermentation based on the bioavailability of polysaccharides...
March 20, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28321989/expansion-of-the-%C3%AF-oxidation-system-alkbgtl-of-pseudomonas-putida-gpo1-with-alkj-and-alkh-results-in-exclusive-mono-esterified-dicarboxylic-acid-production-in-e-%C3%A2-coli
#17
Youri M van Nuland, Fons A de Vogel, Gerrit Eggink, Ruud A Weusthuis
The AlkBGTL proteins coded on the alk operon from Pseudomonas putida GPo1 can selectively ω-oxidize ethyl esters of C6 to C10 fatty acids in whole-cell conversions with Escherichia coli. The major product in these conversions is the ω-alcohol. However, AlkB also has the capacity to overoxidize the substrate to the ω-aldehyde and ω-acid. In this study, we show that alcohol dehydrogenase AlkJ and aldehyde dehydrogenase AlkH are able to oxidize ω-alcohols and ω-aldehydes of esterified fatty acids respectively...
March 20, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28296178/photosynthetic-bacterium-rhodopseudomonas-palustris-gj-22-induces-systemic-resistance-against-viruses
#18
Pin Su, Xinqiu Tan, Chenggang Li, Deyong Zhang, Ju'e Cheng, Songbai Zhang, Xuguo Zhou, Qingpin Yan, Jing Peng, Zhuo Zhang, Yong Liu, Xiangyang Lu
Photosynthetic bacteria (PSB) have been extensively used in agriculture to promote plant growth and to improve crop quality. Their potential application in plant disease management, however, is largely overlooked. In this study, the PSB strain Rhodopseudomonas palustris GJ-22 was investigated for its ability to induce resistance against a plant virus while promoting plant growth. In the field, a foliar spray of GJ-22 suspension protected tobacco plants against tobacco mosaic virus (TMV). Under axenic conditions, GJ-22 colonized the plant phyllosphere and induced resistance against TMV...
March 14, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28296150/history-of-adaptation-determines-short-term-shifts-in-performance-and-community-structure-of-hydrogen-producing-microbial-communities-degrading-wheat-straw
#19
Idania Valdez-Vazquez, Ana L Morales, Ana E Escalante
This study addresses the question of ecological interest for the determination of structure and diversity of microbial communities that degrade lignocellulosic biomasses to produce biofuels. Two microbial consortia with different history, native of wheat straw (NWS) and from a methanogenic digester (MD) fed with cow manure, were contrasted in terms of hydrogen performance, substrate disintegration and microbial diversity. NWS outperformed the hydrogen production rate of MD. Microscopic images revealed that NWS acted on the cuticle and epidermis, generating cellulose strands with high crystallinity, while MD degraded deeper layers, equally affecting all polysaccharides...
March 14, 2017: Microbial Biotechnology
https://www.readbyqxmd.com/read/28276630/the-xyls-pm-regulator-promoter-system-and-its-use-in-fundamental-studies-of-bacterial-gene-expression-recombinant-protein-production-and-metabolic-engineering
#20
REVIEW
Agnieszka Gawin, Svein Valla, Trygve Brautaset
The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low- and high-level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose-dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β-lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5' untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications...
March 9, 2017: Microbial Biotechnology
journal
journal
41743
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"