Read by QxMD icon Read

International Journal of Biostatistics

Hsiang Yu, Yu-Jen Cheng, Ching-Yun Wang
Recurrent event data arise frequently in many longitudinal follow-up studies. Hence, evaluating covariate effects on the rates of occurrence of such events is commonly of interest. Examples include repeated hospitalizations, recurrent infections of HIV, and tumor recurrences. In this article, we consider semiparametric regression methods for the occurrence rate function of recurrent events when the covariates may be measured with errors. In contrast to the existing works, in our case the conventional assumption of independent censoring is violated since the recurrent event process is interrupted by some correlated events, which is called informative drop-out...
August 9, 2016: International Journal of Biostatistics
Donglai Chen, Chuanhai Liu, Jun Xie
Genome-wide association studies (GWAS) examine a large number of genetic variants, e. g., single nucleotide polymorphisms (SNP), and associate them with a disease of interest. Traditional statistical methods for GWASs can produce spurious associations, due to limited information from individual SNPs and confounding effects. This paper develops two statistical methods to enhance data analysis of GWASs. The first is a multiple-SNP association test, which is a weighted chi-square test derived for big contingency tables...
May 27, 2016: International Journal of Biostatistics
Mark van der Laan, Susan Gruber
Consider a study in which one observes n independent and identically distributed random variables whose probability distribution is known to be an element of a particular statistical model, and one is concerned with estimation of a particular real valued pathwise differentiable target parameter of this data probability distribution. The targeted maximum likelihood estimator (TMLE) is an asymptotically efficient substitution estimator obtained by constructing a so called least favorable parametric submodel through an initial estimator with score, at zero fluctuation of the initial estimator, that spans the efficient influence curve, and iteratively maximizing the corresponding parametric likelihood till no more updates occur, at which point the updated initial estimator solves the so called efficient influence curve equation...
May 1, 2016: International Journal of Biostatistics
Iván Díaz, Marco Carone, Mark J van der Laan
We present a second-order estimator of the mean of a variable subject to missingness, under the missing at random assumption. The estimator improves upon existing methods by using an approximate second-order expansion of the parameter functional, in addition to the first-order expansion employed by standard doubly robust methods. This results in weaker assumptions about the convergence rates necessary to establish consistency, local efficiency, and asymptotic linearity. The general estimation strategy is developed under the targeted minimum loss-based estimation (TMLE) framework...
May 1, 2016: International Journal of Biostatistics
Alexander R Luedtke, Mark J van der Laan
We consider the estimation of an optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. This estimation problem is addressed in a statistical model for the data distribution that is nonparametric, beyond possible knowledge about the treatment and censoring mechanisms. We propose data adaptive estimators of this optimal dynamic regime which are defined by sequential loss-based learning under both the blip function and weighted classification frameworks...
May 1, 2016: International Journal of Biostatistics
Alexander R Luedtke, Mark J van der Laan
An individualized treatment rule (ITR) is a treatment rule which assigns treatments to individuals based on (a subset of) their measured covariates. An optimal ITR is the ITR which maximizes the population mean outcome. Previous works in this area have assumed that treatment is an unlimited resource so that the entire population can be treated if this strategy maximizes the population mean outcome. We consider optimal ITRs in settings where the treatment resource is limited so that there is a maximum proportion of the population which can be treated...
May 1, 2016: International Journal of Biostatistics
Karel Vermeulen, Stijn Vansteelandt
Doubly robust estimators have now been proposed for a variety of target parameters in the causal inference and missing data literature. These consistently estimate the parameter of interest under a semiparametric model when one of two nuisance working models is correctly specified, regardless of which. The recently proposed bias-reduced doubly robust estimation procedure aims to partially retain this robustness in more realistic settings where both working models are misspecified. These so-called bias-reduced doubly robust estimators make use of special (finite-dimensional) nuisance parameter estimators that are designed to locally minimize the squared asymptotic bias of the doubly robust estimator in certain directions of these finite-dimensional nuisance parameters under misspecification of both parametric working models...
May 1, 2016: International Journal of Biostatistics
Wenjing Zheng, Maya Petersen, Mark J van der Laan
In social and health sciences, many research questions involve understanding the causal effect of a longitudinal treatment on mortality (or time-to-event outcomes in general). Often, treatment status may change in response to past covariates that are risk factors for mortality, and in turn, treatment status may also affect such subsequent covariates. In these situations, Marginal Structural Models (MSMs), introduced by Robins (1997. Marginal structural models Proceedings of the American Statistical Association...
May 1, 2016: International Journal of Biostatistics
Ashkan Ertefaie, Dylan Small, James Flory, Sean Hennessy
Instrumental variable (IV) methods are widely used to adjust for the bias in estimating treatment effects caused by unmeasured confounders in observational studies. It is common that a comparison between two treatments is focused on and that only subjects receiving one of these two treatments are considered in the analysis even though more than two treatments are available. In this paper, we provide empirical and theoretical evidence that the IV methods may result in biased treatment effects if applied on a data set in which subjects are preselected based on their received treatments...
May 1, 2016: International Journal of Biostatistics
Erin LeDell, Mark J van der Laan, Maya Peterson
Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in binary classification problems. An AUC-maximizing classifier can have significant advantages in cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble, maximization of the AUC can be achieved by the use of an AUC-maximining metalearning algorithm. We discuss an implementation of an AUC-maximization technique that is formulated as a nonlinear optimization problem. We also evaluate the effectiveness of a large number of different nonlinear optimization algorithms to maximize the cross-validated AUC of the ensemble fit...
May 1, 2016: International Journal of Biostatistics
Romain Neugebauer, Julie A Schmittdiel, Mark J van der Laan
OBJECTIVE: Consistent estimation of causal effects with inverse probability weighting estimators is known to rely on consistent estimation of propensity scores. To alleviate the bias expected from incorrect model specification for these nuisance parameters in observational studies, data-adaptive estimation and in particular an ensemble learning approach known as Super Learning has been proposed as an alternative to the common practice of estimation based on arbitrary model specification...
May 1, 2016: International Journal of Biostatistics
Jacopo Mandozzi, Peter Bühlmann
We propose a general, modular method for significance testing of groups (or clusters) of variables in a high-dimensional linear model. In presence of high correlations among the covariables, due to serious problems of identifiability, it is indispensable to focus on detecting groups of variables rather than singletons. We propose an inference method which allows to build in hierarchical structures. It relies on repeated sample splitting and sequential rejection, and we prove that it asymptotically controls the familywise error rate...
May 1, 2016: International Journal of Biostatistics
Michael D Regier, Erica E M Moodie
We propose an extension of the EM algorithm that exploits the common assumption of unique parameterization, corrects for biases due to missing data and measurement error, converges for the specified model when standard implementation of the EM algorithm has a low probability of convergence, and reduces a potentially complex algorithm into a sequence of smaller, simpler, self-contained EM algorithms. We use the theory surrounding the EM algorithm to derive the theoretical results of our proposal, showing that an optimal solution over the parameter space is obtained...
May 1, 2016: International Journal of Biostatistics
Heidi Seibold, Achim Zeileis, Torsten Hothorn
The identification of patient subgroups with differential treatment effects is the first step towards individualised treatments. A current draft guideline by the EMA discusses potentials and problems in subgroup analyses and formulated challenges to the development of appropriate statistical procedures for the data-driven identification of patient subgroups. We introduce model-based recursive partitioning as a procedure for the automated detection of patient subgroups that are identifiable by predictive factors...
May 1, 2016: International Journal of Biostatistics
Daniel B Rubin
The Optimal Discovery Procedure (ODP) is a method for simultaneous hypothesis testing that attempts to gain power relative to more standard techniques by exploiting multivariate structure [1]. Specializing to the example of testing whether components of a Gaussian mean vector are zero, we compare the power of the ODP to a Bonferroni-style method and to the Benjamini-Hochberg method when the testing procedures aim to respectively control certain Type I error rate measures, such as the expected number of false positives or the false discovery rate...
May 1, 2016: International Journal of Biostatistics
Alan E Hubbard, Sara Kherad-Pajouh, Mark J van der Laan
Consider one observes n i.i.d. copies of a random variable with a probability distribution that is known to be an element of a particular statistical model. In order to define our statistical target we partition the sample in V equal size sub-samples, and use this partitioning to define V splits in an estimation sample (one of the V subsamples) and corresponding complementary parameter-generating sample. For each of the V parameter-generating samples, we apply an algorithm that maps the sample to a statistical target parameter...
May 1, 2016: International Journal of Biostatistics
Antoine Chambaz, Alan Hubbard, Mark J van der Laan
No abstract text is available yet for this article.
May 1, 2016: International Journal of Biostatistics
Molly Margaret Davies, Mark J van der Laan
Spatial prediction is an important problem in many scientific disciplines. Super Learner is an ensemble prediction approach related to stacked generalization that uses cross-validation to search for the optimal predictor amongst all convex combinations of a heterogeneous candidate set. It has been applied to non-spatial data, where theoretical results demonstrate it will perform asymptotically at least as well as the best candidate under consideration. We review these optimality properties and discuss the assumptions required in order for them to hold for spatial prediction problems...
May 1, 2016: International Journal of Biostatistics
Kristin A Linn, Bilwaj Gaonkar, Jimit Doshi, Christos Davatzikos, Russell T Shinohara
Understanding structural changes in the brain that are caused by a particular disease is a major goal of neuroimaging research. Multivariate pattern analysis (MVPA) comprises a collection of tools that can be used to understand complex disease efxcfects across the brain. We discuss several important issues that must be considered when analyzing data from neuroimaging studies using MVPA. In particular, we focus on the consequences of confounding by non-imaging variables such as age and sex on the results of MVPA...
May 1, 2016: International Journal of Biostatistics
Benjamin A Goldstein, Eric C Polley, Farren B S Briggs, Mark J van der Laan, Alan Hubbard
Comparing the relative fit of competing models can be used to address many different scientific questions. In classical statistics one can, if appropriate, use likelihood ratio tests and information based criterion, whereas clinical medicine has tended to rely on comparisons of fit metrics like C-statistics. However, for many data adaptive modelling procedures such approaches are not suitable. In these cases, statisticians have used cross-validation, which can make inference challenging. In this paper we propose a general approach that focuses on the "conditional" risk difference (conditional on the model fits being fixed) for the improvement in prediction risk...
May 1, 2016: International Journal of Biostatistics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"