Read by QxMD icon Read

IEEE Transactions on Biomedical Circuits and Systems

Wenfeng Zhao, Biao Sun, Tong Wu, Zhi Yang
On-chip neural data compression is an enabling technique for wireless neural interfaces that suffer from insufficient bandwidth and power budgets to transmit the raw data. The data compression algorithm and its implementation should be power and area efficient and functionally reliable over different datasets. Compressed sensing is an emerging technique that has been applied to compress various neurophysiological data. However, the state-of-the-art compressed sensing (CS) encoders leverage random but dense binary measurement matrices, which incur substantial implementation costs on both power and area that could offset the benefits from the reduced wireless data rate...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Guillermo Dufort Y Alvarez, Federico Favaro, Federico Lecumberry, Alvaro Martin, Juan P Oliver, Julian Oreggioni, Ignacio Ramirez, Gadiel Seroussi, Leonardo Steinfeld
This work presents a wireless multichannel electroencephalogram (EEG) recording system featuring lossless and near-lossless compression of the digitized EEG signal. Two novel, low-complexity, efficient compression algorithms were developed and tested in a low-power platform. The algorithms were tested on six public EEG databases comparing favorably with the best compression rates reported up to date in the literature. In its lossless mode, the platform is capable of encoding and transmitting 59-channel EEG signals, sampled at 500 Hz and 16 bits per sample, at a current consumption of 337 A per channel; this comes with a guarantee that the decompressed signal is identical to the sampled one...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Mohammad Takhti, Yueh-Ching Teng, Kofi Odame
This paper presents the design and implementation of a read-out chain for electrical impedance tomography (EIT) imaging. The EIT imaging approach can be incorporated to take spectral images of the tissue under study, offering an affordable, portable device for home health monitoring. A fast read-out channel covering a wide range of frequencies is a must for such applications. The proposed read-out channel comprising a programmable gain instrumentation amplifier, an analog-to-digital converter (ADC), and an ADC driver is designed and fabricated in a 0...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Milad Zamani, Yasser Rezaeiyan, Omid Shoaei, Wouter A Serdijn
This paper presents an implantable bio-impedance measurement system for cardiac pacemakers. The fully integrated system features a low power analog front-end and pulse width modulated output. The bio-impedance readout benefits from voltage to time conversion to achieve a very low power consumption for wirelessly transmitting the data outside the body. The proposed IC is fabricated in a 0.18 μm CMOS process and is capable of measuring the bio-impedance at 2 kHz over a wide dynamic range from to with accuracy and maximum current injection while consuming just from a 1 V supply...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Daniel H Johansen, Juan D Sanchez-Heredia, Jan R Petersen, Tom K Johansen, Vitaliy Zhurbenko, Jan H Ardenkjaer-Larsen
Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier operated at 77 K is designed and implemented for C imaging at 3 T (32.13 MHz), using off-the-shelves components. The design is based on a high electron mobility transistor (ATF54143) in a common source configuration...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
M Nazmus Sahadat, Arish Alreja, Maysam Ghovanloo
Multimodal Tongue Drive System (mTDS) is a highly integrated wireless assistive technology (AT) in the form of a lightweight wearable headset that utilizes three remaining key control and communication abilities in people with severe physical disabilities, such as tetraplegia, to provide them with effective access to computers: 1) tongue motion for discrete/switch-based control (e.g., clicking), 2) head tracking for proportional control (e.g., mouse pointer movements), and 3) speech recognition for typing, all available simultaneously...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Yuan Meng, Brent Bottenfield, Mark Bolding, Lei Liu, Mark L Adams
The eye may act as a surrogate for the brain in response to head acceleration during an impact. Passive eye movements in a dynamic system are sensed by microelectromechanical systems (MEMS) inertial measurement units (IMU) in this paper. The technique is validated using a three-dimensional printed scaled human skull model and on human volunteers by performing drop-and-impact experiments with ribbon-style flexible printed circuit board IMUs inserted in the eyes and reference IMUs on the heads. Data are captured by a microcontroller unit and processed using data fusion...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Lichen Feng, Zunchao Li, Yuanfa Wang
Portable automatic seizure detection system is very convenient for epilepsy patients to carry. In order to make the system on-chip trainable with high efficiency and attain high detection accuracy, this paper presents a very large scale integration (VLSI) design based on the nonlinear support vector machine (SVM). The proposed design mainly consists of a feature extraction (FE) module and an SVM module. The FE module performs the three-level Daubechies discrete wavelet transform to fit the physiological bands of the electroencephalogram (EEG) signal and extracts the time-frequency domain features reflecting the nonstationary signal properties...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Hwasuk Cho, Hyunwoo Son, Kihwan Seong, Byungsub Kim, Hong-June Park, Jae-Yoon Sim
This paper presents an IC implementation of on-chip learning neuromorphic autoencoder unit in a form of rate-based spiking neural network. With a current-mode signaling scheme embedded in a 500 × 500 6b SRAM-based memory, the proposed architecture achieves simultaneous processing of multiplications and accumulations. In addition, a transposable memory read for both forward and backward propagations and a virtual lookup table are also proposed to perform an unsupervised learning of restricted Boltzmann machine...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Chih-Han Chen, Maria Karvela, Mohammadreza Sohbati, Thaksin Shinawatra, Christofer Toumazou
The rise of personalized diets is due to the emergence of nutrigenetics and genetic tests services. However, the recommendation system is far from mature to provide personalized food suggestion to consumers for daily usage. The main barrier of connecting genetic information to personalized diets is the complexity of data and the scalability of the applied systems. Aiming to cross such barriers and provide direct applications, a personalized expert recommendation system for optimized nutrition is introduced in this paper, which performs direct to consumer personalized grocery product filtering and recommendation...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Sourav Kumar Mukhopadhyay, M Omair Ahmad, M N S Swamy
Advancements in electronics and miniaturized device fabrication technologies have enabled simultaneous acquisition of multiple biosignals (MBioSigs), but the area of compression of MBioSigs remains unexplored to date. This paper presents a robust singular value decomposition (SVD) and American standard code for information interchange (ASCII) character encoding-based algorithm for compression of MBioSigs for the first time to the best of our knowledge. At the preprocessing stage, MBioSigs are denoised, down sampled and then transformed to a two-dimensional (2-D) data array...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Diederik Paul Moeys, Federico Corradi, Chenghan Li, Simeon A Bamford, Luca Longinotti, Fabian F Voigt, Stewart Berry, Gemma Taverni, Fritjof Helmchen, Tobi Delbruck
Applications requiring detection of small visual contrast require high sensitivity. Event cameras can provide higher dynamic range (DR) and reduce data rate and latency, but most existing event cameras have limited sensitivity. This paper presents the results of a 180-nm Towerjazz CIS process vision sensor called SDAVIS192. It outputs temporal contrast dynamic vision sensor (DVS) events and conventional active pixel sensor frames. The SDAVIS192 improves on previous DAVIS sensors with higher sensitivity for temporal contrast...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Saber Moradi, Ning Qiao, Fabio Stefanini, Giacomo Indiveri
Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here, we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Julia Faerber, Gerard Cummins, Sumanth Kumar Pavuluri, Paul Record, Adrian R Ayastuy Rodriguez, Holly S Lay, Rachael McPhillips, Benjamin F Cox, Ciaran Connor, Rachael Gregson, Richard Eddie Clutton, Sadeque Reza Khan, Sandy Cochran, Marc P Y Desmulliez
This paper describes the design, fabrication, packaging, and performance characterization of a conformal helix antenna created on the outside of a capsule endoscope designed to operate at a carrier frequency of 433 MHz within human tissue. Wireless data transfer was established between the integrated capsule system and an external receiver. The telemetry system was tested within a tissue phantom and in vivo porcine models. Two different types of transmission modes were tested. The first mode, replicating normal operating conditions, used data packets at a steady power level of 0 dBm, while the capsule was being withdrawn at a steady rate from the small intestine...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Jong Seok Park, Moez Karim Aziz, Sensen Li, Taiyun Chi, Sandra Ivonne Grijalva, Jung Hoon Sung, Hee Cheol Cho, Hua Wang
This paper presents a fully integrated CMOS multimodality joint sensor/stimulator array with 1024 pixels for real-time holistic cellular characterization and drug screening. The proposed system consists of four pixel groups and four parallel signal-conditioning blocks. Every pixel group contains 16 × 16 pixels, and each pixel includes one gold-plated electrode, four photodiodes, and in-pixel circuits, within a pixel footprint. Each pixel supports real-time extracellular potential recording, optical detection, charge-balanced biphasic current stimulation, and cellular impedance measurement for the same cellular sample...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Mert Ergeneci, Kaan Gokcesu, Erhan Ertan, Panagiotis Kosmas
Wearable technology has gained increasing popularity in the applications of healthcare, sports science, and biomedical engineering in recent years. Because of its convenient nature, the wearable technology is particularly useful in the acquisition of the physiological signals. Specifically, the (surface electromyography) sEMG systems, which measure the muscle activation potentials, greatly benefit from this technology in both clinical and industrial applications. However, the current wearable sEMG systems have several drawbacks including inefficient noise cancellation, insufficient measurement quality, and difficult integration to customized applications...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Ali Jafari, Nathanael Buswell, Maysam Ghovanloo, Tinoosh Mohsenin
This paper presents a low-power stand-alone tongue drive system (sTDS) used for individuals with severe disabilities to potentially control their environment such as computer, smartphone, and wheelchair using their voluntary tongue movements. A low-power local processor is proposed, which can perform signal processing to convert raw magnetic sensor signals to user-defined commands, on the sTDS wearable headset, rather than sending all raw data out to a PC or smartphone. The proposed sTDS significantly reduces the transmitter power consumption and subsequently increases the battery life...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
David Tsai, Rafael Yuste, Kenneth L Shepard
Multiplexing is an important strategy in multichannel acquisition systems. The per-channel antialiasing filters needed in the traditional multiplexing architecture limit its scalability for applications requiring high channel density, high channel count, and low noise. A particularly challenging example is multielectrode arrays for recording from neural systems. We show that conventional approaches must tradeoff recording density and noise performance, at a scale far from the ideal goal of one-to-one mapping between neurons and sensors...
February 2018: IEEE Transactions on Biomedical Circuits and Systems
Jun Wang, Daniel Breen, Abraham Akinin, Frederic Broccard, Henry D I Abarbanel, Gert Cauwenberghs
Representing the biophysics of neuronal dynamics and behavior offers a principled analysis-by-synthesis approach toward understanding mechanisms of nervous system functions. We report on a set of procedures assimilating and emulating neurobiological data on a neuromorphic very large scale integrated (VLSI) circuit. The analog VLSI chip, NeuroDyn, features 384 digitally programmable parameters specifying for 4 generalized Hodgkin-Huxley neurons coupled through 12 conductance-based chemical synapses. The parameters also describe reversal potentials, maximal conductances, and spline regressed kinetic functions for ion channel gating variables...
December 2017: IEEE Transactions on Biomedical Circuits and Systems
Qin Wang, Yue Xu, Shiliang Zuo, Hailong Yao, Tsung-Yi Ho, Bing Li, Ulf Schlichtmann, Yici Cai
Flow-based microfluidic biochips are attracting increasing attention with successful biomedical applications. One critical issue with flow-based microfluidic biochips is the large number of microvalves that require peripheral control pins. Even using the broadcasting addressing scheme, i.e., one control pin controls multiple microvalves simultaneously, thousands of microvalves would still require hundreds of control prins, which is unrealistic. To address this critical challenge in control scalability, the control-layer multiplexer is introduced to effectively reduce the number of control pins into log scale of the number of microvalves...
December 2017: IEEE Transactions on Biomedical Circuits and Systems
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"