Read by QxMD icon Read

Molecular Oncology

Chun-Yu Liu, Jung-Chen Su, Tzu-Ting Huang, Pei-Yi Chu, Chun-Teng Huang, Wan-Lun Wang, Chia-Han Lee, Ka-Yi Lau, Wen-Chun Tsai, Hsiu-Ping Yang, Chung-Wai Shiau, Ling-Ming Tseng, Kuen-Feng Chen
Recurrent triple-negative breast cancer (TNBC) needs new therapeutic targets. Src homology region 2 domain-containing phosphatase-1 (SHP-1) can act as a tumor suppressor by dephosphorylating oncogenic kinases. One major target of SHP-1 is STAT3, which is highly activated in TNBC. In this study, we tested a sorafenib analogue SC-60, which lacks angiokinase inhibition activity but acts as a SHP-1 agonist, in TNBC cells. SC-60 inhibited proliferation and induced apoptosis by dephosphorylating STAT3 in both a dose- and time-dependent manner in TNBC cells (MDA-MB-231, MDA-MB-468, HCC1937)...
January 13, 2017: Molecular Oncology
Lobna Elkhadragy, Minyi Chen, Kennon Miller, Muh-Hwa Yang, Weiwen Long
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK), whose biological activity is tightly regulated by its cellular abundance. Recent studies have revealed that ERK3 is upregulated in multiple cancers and promotes cancer cell migration/invasion and drug resistance. Little is known, however, about how ERK3 expression level is upregulated in cancers. Here, we have identified the oncogenic polycomb group protein BMI1 as a positive regulator of ERK3 level in head and neck cancer cells...
November 9, 2016: Molecular Oncology
Antoine M Snijders, Sun-Young Lee, Bo Hang, Wenshan Hao, Mina J Bissell, Jian-Hua Mao
The development of novel targeted therapies for cancer treatment requires identification of reliable targets. FAM83 ('family with sequence similarity 83') family members A, B, and D were shown recently to have oncogenic potential. However, the overall oncogenic abilities of FAM83 family genes remain largely unknown. Here, we used a systematic and integrative genomics approach to investigate oncogenic properties of the entire FAM83 family members. We assessed transcriptional expression patterns of eight FAM83 family genes (FAM83A-H) across tumor types, the relationship between their expression and changes in DNA copy number, and the association with patient survival...
October 26, 2016: Molecular Oncology
Daniele V F Tauriello, Alexandre Calon, Enza Lonardo, Eduard Batlle
Colorectal cancer (CRC) is one of the most common cancer types and represents a major therapeutic challenge. Although initial events in colorectal carcinogenesis are relatively well characterized and treatment for early-stage disease has significantly improved over the last decades, the mechanisms underlying metastasis - the main cause of death - remain poorly understood. Correspondingly, no effective therapy is currently available for advanced or metastatic disease. There is increasing evidence that colorectal cancer is hierarchically organized and sustained by cancer stem cells, in concert with various stromal cell types...
January 2017: Molecular Oncology
Pahini Pandya, Jose L Orgaz, Victoria Sanz-Moreno
Cancer cell migration and invasion underlie metastatic dissemination, one of the major problems in cancer. Tumour cells exhibit a striking variety of invasion strategies. Importantly, cancer cells can switch between invasion modes in order to cope with challenging environments. This ability to switch migratory modes or plasticity highlights the challenges behind antimetastasis therapy design. In this Review, we present current knowledge on different tumour invasion strategies, the determinants controlling plasticity and arising therapeutic opportunities...
January 2017: Molecular Oncology
Arko Dasgupta, Andrea R Lim, Cyrus M Ghajar
Tumor cells leave the primary tumor and enter the circulation. Once there, they are called circulating tumor cells (CTCs). A fraction of CTCs are capable of entering distant sites and persisting as disseminated tumor cells (DTCs). An even smaller fraction of DTCs are capable of progressing toward metastases. It is known that the DTC microenvironment plays an important role in sustaining their survival, regulating their growth, and conferring resistance to therapy. But we still have much to learn about the nature of these rare cell populations to predict which will progress and what exactly should cause concern for future relapse...
January 2017: Molecular Oncology
Kay T Yeung, Jing Yang
The epithelial-mesenchymal transition (EMT) is a developmental program that enables stationary epithelial cells to gain the ability to migrate and invade as single cells. Tumor cells reactivate EMT to acquire molecular alterations that enable the partial loss of epithelial features and partial gain of a mesenchymal phenotype. Our understanding of the contribution of EMT to tumor invasion, migration, and metastatic outgrowth has evolved over the past decade. In this review, we provide a summary of both historic and recent studies on the role of EMT in the metastatic cascade from various experimental systems, including cancer cell lines, genetic mouse tumor models, and clinical human breast cancer tissues...
January 2017: Molecular Oncology
Joan Massagué, Eduard Batlle, Roger R Gomis
No abstract text is available yet for this article.
January 2017: Molecular Oncology
B Sandfeld-Paulsen, N Aggerholm-Pedersen, R Bæk, K R Jakobsen, P Meldgaard, B H Folkersen, T R Rasmussen, K Varming, M M Jørgensen, B S Sorensen
BACKGROUND: Use of exosomes as biomarkers in non-small cell lung cancer (NSCLC) is an intriguing approach in the liquid-biopsy era. Exosomes are nano-sized vesicles with membrane-bound proteins that reflect their originating cell. Prognostic biomarkers are needed to improve patient selection for optimal treatment. We here evaluate exosomes by protein phenotyping as a prognostic biomarker in NSCLC. METHODS: Exosomes from plasma of 276 NSCLC patients were phenotyped using the Extracellular Vesicle Array; 49 antibodies captured the proteins on the exosomes, and a cocktail of biotin-conjugated antibodies binding the general exosome markers CD9, CD81 and CD63 was used to visualise the captured exosomes...
December 2016: Molecular Oncology
Maria B Lyng, Annette R Kodahl, Harald Binder, Henrik J Ditzel
Mammography is the predominant screening method for early detection of breast cancer, but has limitations and could be rendered more accurate by combination with a blood-based biomarker profile. Circulating microRNAs (miRNAs) are increasingly recognized as strong biomarkers, and we previously developed a 9-miRNA profile using serum and LNA-based qPCR that effectively stratified patients with early stage breast cancer vs. healthy women. To further develop the test into routine clinical practice, we collected serum of women examined by clinical mammography (N = 197) according to standard operational procedures (SOPs) of the Danish Cancer Biobank...
December 2016: Molecular Oncology
Shuai Hu, Lei Li, Shuyuan Yeh, Yun Cui, Xin Li, Hong-Chiang Chang, Jie Jin, Chawnshang Chang
No abstract text is available yet for this article.
December 2016: Molecular Oncology
Elisa Pin, Steven Stratton, Claudio Belluco, Lance Liotta, Ray Nagle, K Alex Hodge, Jianghong Deng, Ting Dong, Elisa Baldelli, Emanuel Petricoin, Mariaelena Pierobon
The cross-talk between tumor epithelium and surrounding stromal/immune microenvironment is essential to sustain tumor growth and progression and provides new opportunities for the development of targeted treatments focused on disrupting the tumor ecology. Identification of novel approaches to study these interactions is of primary importance. Using laser capture microdissection (LCM) coupled with reverse phase protein microarray (RPPA) based protein signaling activation mapping we explored the molecular interconnection between tumor epithelium and surrounding stromal microenvironment in 18 prostate cancer (PCa) specimens...
December 2016: Molecular Oncology
Prabhakar Bastola, Lisa Neums, Frank J Schoenen, Jeremy Chien
Valosin-containing protein (VCP) or p97, a member of AAA-ATPase protein family, has been associated with various cellular functions including endoplasmic reticulum-associated degradation (ERAD), Golgi membrane reassembly, autophagy, DNA repair, and cell division. Recent studies identified VCP and ubiquitin proteasome system (UPS) as synthetic lethal targets in ovarian cancer. Here, we describe the preclinical activity of VCP inhibitors in ovarian cancer. Results from our studies suggest that quinazoline-based VCP inhibitors initiate G1 cell cycle arrest, attenuate cap-dependent translation and induce programmed cell death via the intrinsic and the extrinsic modes of apoptosis...
December 2016: Molecular Oncology
Moritz F Kircher, Hedvig Hricak, Steven M Larson
No abstract text is available yet for this article.
December 2016: Molecular Oncology
Congqi Dai, Ruixuan Geng, Chenchen Wang, Angela Wong, Min Qing, Jianjun Hu, Yu Sun, A W I Lo, Jin Li
Checkpoint blockade therapy has emerged as a novel approach for cancer immunotherapy in several malignancies. However, patient prognosis and disease progression relevant to immune checkpoints in gastric tumor microenvironment are not defined. This study aims to investigate the expression and prognostic significance of immune checkpoints within gastric cancer. In the study, a cohort of 398 cancer tissues from stage I to IV gastric cancer patients were assessed for programmed cell death 1 ligand 1 (PD-L1) expression and tumor-infiltrating lymphocyte (TIL) infiltration using immunohistochemistry to ascertain their survival correlation...
December 2016: Molecular Oncology
Ewa M Michalak, Jane E Visvader
Histone methyltransferases (HMTs) catalyze the methylation of lysine and arginine residues on histone tails and non-histone targets. These important post-translational modifications are exquisitely regulated and affect chromatin compaction and transcriptional programs leading to diverse biological outcomes. There is accumulating evidence that genetic alterations of several HMTs impinge on oncogenic or tumor-suppressor functions and influence both cancer initiation and progression. HMTs therefore represent an opportunity for therapeutic targeting in those patients with tumors in which HMTs are dysregulated, to reverse the histone marks and transcriptional programs associated with aggressive tumor behavior...
December 2016: Molecular Oncology
Chris Zhiyi Zhang, Yun Cao, Jia Fu, Jing-Ping Yun, Mei-Fang Zhang
Deregulation of microRNAs contributes to the aberrant growth of hepatocellular carcinoma (HCC). Here, we showed that miR-634 expression was frequently decreased in HCC. Low miR-634 expression was significantly associated with larger tumor size, poorer tumor differentiation, advanced TNM stage, vascular invasion, absence of tumor capsule and unfavorable overall survival. Overexpression of miR-634 markedly attenuated cell viability, colony formation, tumor growth and metastasis, whereas miR-634 inhibition resulted in the opposite phenotypes...
December 2016: Molecular Oncology
E P van der Stok, M Smid, A M Sieuwerts, P B Vermeulen, S Sleijfer, N Ayez, D J Grünhagen, J W M Martens, C Verhoef
BACKGROUND: Identification of specific risk groups for recurrence after surgery for isolated colorectal liver metastases (CRLM) remains challenging due to the heterogeneity of the disease. Classical clinicopathologic parameters have limited prognostic value. The aim of this study was to identify a gene expression signature measured in CRLM discriminating early from late recurrence after partial hepatectomy. METHODS: CRLM from two patient groups were collected: I) with recurrent disease ≤12 months after surgery (N = 33), and II) without recurrences and disease free for ≥36 months (N = 30)...
December 2016: Molecular Oncology
Paul Zarogoulidis, Savvas Petanidis, Kalliopi Domvri, Efrosini Kioseoglou, Doxakis Anestakis, Lutz Freitag, Konstantinos Zarogoulidis, Wolfgang Hohenforst-Schmidt, Wilfried Eberhardt
Chemoresistance is a major challenge in lung cancer treatment. Recent findings have revealed that autophagic mechanism contributes significantly to immunosuppressive related chemoresistance. For that reason, targeting autophagy-related immunosuppression is an important approach to reverse tumor drug resistance. In this study, we report for the first time that autophagy inhibition triggers upregulation of CD4(+), Foxp3(+) tumor infiltrating lymphocytes in late metastatic lung cancer tissues. Furthermore, autophagy blockage induces chemosensitization to carboplatin, immune activation and cell cycle arrest...
December 2016: Molecular Oncology
Robin M Hallett, Alex B K Seong, David R Kaplan, Meredith S Irwin
BACKGROUND: In the pediatric cancer neuroblastoma (NB), patients are stratified into low, intermediate or high-risk subsets based in part on MYCN amplification status. While MYCN amplification in general predicts unfavorable outcome, no clinical or genomic factors have been identified that predict outcome within these cohorts of high-risk patients. In particular, it is currently not possible at diagnosis to determine which high-risk neuroblastoma patients will ultimately fail upfront therapy...
November 2016: Molecular Oncology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"