Read by QxMD icon Read

Computational and Mathematical Methods in Medicine

Min Shao
We aimed to identify risk pathways for postmenopausal osteoporosis (PMOP) via establishing an microRNAs- (miRNA-) regulated pathway network (MRPN). Firstly, we identified differential pathways through calculating gene- and pathway-level statistics based on the accumulated normal samples using the individual pathway aberrance score (iPAS). Significant pathways based on differentially expressed genes (DEGs) using DAVID were extracted, followed by identifying the common pathways between iPAS and DAVID methods...
2017: Computational and Mathematical Methods in Medicine
Hisham Elkenani, Essam Al-Bahkali, Mhamed Souli
The aim of this study is to present a reliable computational scheme to serve in pulse wave velocity (PWV) assessment in large arteries. Clinicians considered it as an indication of human blood vessels' stiffness. The simulation of PWV was conducted using a 3D elastic tube representing an artery. The constitutive material model specific for vascular applications was applied to the tube material. The fluid was defined with an equation of state representing the blood material. The onset of a velocity pulse was applied at the tube inlet to produce wave propagation...
2017: Computational and Mathematical Methods in Medicine
Ertugrul Colak, Hulya Ozen, Busra Emir, Setenay Oner
The aim of this study is to propose a new pairwise multiple comparison adjustment procedure based on Genz's numerical computation of probabilities from a multivariate normal distribution. This method is applied to the results of two-sample log-rank and weighted log-rank statistics where the survival data contained right-censored observations. We conducted Monte Carlo simulation studies not only to evaluate the familywise error rate and power of the proposed procedure but also to compare the procedure with conventional methods...
2017: Computational and Mathematical Methods in Medicine
Matthew B Wolf
The hemoglobin-dilution method (HDM) has been used to estimate changes in vascular volumes in patients because direct measurements with radioisotopes are time-consuming and not practical in many facilities. The HDM requires an assumption of initial blood volume, repeated measurements of plasma hemoglobin concentration, and the calculation of the ratio of hemoglobin measurements. The statistics of these ratio distributions resulting from measurement error are ill-defined even when the errors are normally distributed...
2017: Computational and Mathematical Methods in Medicine
Colleen Burgess, Andrew Burgess, Kellie McMullen
Objectives: Transmission of polio poses a threat to military forces when deploying to regions where such viruses are endemic. US-born soldiers generally enter service with immunity resulting from childhood immunization against polio; moreover, new recruits are routinely vaccinated with inactivated poliovirus vaccine (IPV), supplemented based upon deployment circumstances. Given residual protection from childhood vaccination, risk-based vaccination may sufficiently protect troops from polio transmission...
2017: Computational and Mathematical Methods in Medicine
Hui Zhang, Tangxin Li, Linqing Zheng, Xiangya Huang
Oral squamous cell carcinoma is one of the most malignant tumors with high mortality rate worldwide. Biomarker discovery is critical for early diagnosis and precision treatment of this disease. MicroRNAs are small noncoding RNA molecules which often regulate essential biological processes and are good candidates for biomarkers. By integrative analysis of both the cancer-associated gene expression data and microRNA-mRNA network, miR-148b-3p, miR-629-3p, miR-27a-3p, and miR-142-3p were screened as novel diagnostic biomarkers for oral squamous cell carcinoma based on their unique regulatory abilities in the network structure of the conditional microRNA-mRNA network and their important functions...
2017: Computational and Mathematical Methods in Medicine
Olaf Gefeller, Benjamin Hofner, Andreas Mayr, Elisabeth Waldmann
No abstract text is available yet for this article.
2017: Computational and Mathematical Methods in Medicine
G Cioca, E S Bacaita, M Agop, C Lupascu Ursulescu
In the frame of Higuchi's type functionality, this paper presents the anisotropy influences on the drug delivery mechanisms through the joint invariant functions to the simultaneous actions of the two SL(2R) isomorphic groups. Then, a new equation for drug delivery mechanism, independent of the type of polymer matrix and/or drug, is proposed.
2017: Computational and Mathematical Methods in Medicine
Yongyu Ye, Wei You, Weimin Zhu, Jiaming Cui, Kang Chen, Daping Wang
Proximal humeral fractures are common and most challenging, due to the complexity of the glenohumeral joint, especially in the geriatric population with impacted fractures, that the development of implants continues because currently the problems with their fixation are not solved. Pre-, intra-, and postoperative assessments are crucial in management of those patients. Finite element analysis, as one of the valuable tools, has been implemented as an effective and noninvasive method to analyze proximal humeral fractures, providing solid evidence for management of troublesome patients...
2017: Computational and Mathematical Methods in Medicine
Getachew Teshome Tilahun, Oluwole Daniel Makinde, David Malonza
We propose and analyze a compartmental nonlinear deterministic mathematical model for the typhoid fever outbreak and optimal control strategies in a community with varying population. The model is studied qualitatively using stability theory of differential equations and the basic reproductive number that represents the epidemic indicator is obtained from the largest eigenvalue of the next-generation matrix. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined...
2017: Computational and Mathematical Methods in Medicine
Navavat Pipatsart, Wannapong Triampo, Charin Modchang
We presented adaptive random network models to describe human behavioral change during epidemics and performed stochastic simulations of SIR (susceptible-infectious-recovered) epidemic models on adaptive random networks. The interplay between infectious disease dynamics and network adaptation dynamics was investigated in regard to the disease transmission and the cumulative number of infection cases. We found that the cumulative case was reduced and associated with an increasing network adaptation probability but was increased with an increasing disease transmission probability...
2017: Computational and Mathematical Methods in Medicine
Wufeng Fan, Yuhan Zhou, Hao Li
In our study, we aimed to extract dysregulated pathways in human monocytes infected by Listeria monocytogenes (LM) based on pathway interaction network (PIN) which presented the functional dependency between pathways. After genes were aligned to the pathways, principal component analysis (PCA) was used to calculate the pathway activity for each pathway, followed by detecting seed pathway. A PIN was constructed based on gene expression profile, protein-protein interactions (PPIs), and cellular pathways. Identifying dysregulated pathways from the PIN was performed relying on seed pathway and classification accuracy...
2017: Computational and Mathematical Methods in Medicine
Lee Worden, Ira B Schwartz, Simone Bianco, Sarah F Ackley, Thomas M Lietman, Travis C Porco
We extend a technique of approximation of the long-term behavior of a supercritical stochastic epidemic model, using the WKB approximation and a Hamiltonian phase space, to the subcritical case. The limiting behavior of the model and approximation are qualitatively different in the subcritical case, requiring a novel analysis of the limiting behavior of the Hamiltonian system away from its deterministic subsystem. This yields a novel, general technique of approximation of the quasistationary distribution of stochastic epidemic and birth-death models and may lead to techniques for analysis of these models beyond the quasistationary distribution...
2017: Computational and Mathematical Methods in Medicine
Shafiullah Soomro, Farhan Akram, Asad Munir, Chang Ha Lee, Kwang Nam Choi
Segmentation of left and right ventricles plays a crucial role in quantitatively analyzing the global and regional information in the cardiac magnetic resonance imaging (MRI). In MRI, the intensity inhomogeneity and weak or blurred object boundaries are the problems, which makes it difficult for the intensity-based segmentation methods to properly delineate the regions of interests (ROI). In this paper, a hybrid signed pressure force function (SPF) is proposed, which yields both local and global image fitted differences in an additive fashion...
2017: Computational and Mathematical Methods in Medicine
Oluwaseyi M Oderinde, F C P du Plessis
The Integral Quality Monitoring (IQM) System is a real-time beam output verifying system that validates the integrity and accuracy of patient treatment plan (TP) data during radiation treatment. The purpose of this study was to evaluate the sensitivity of the IQM to errors in segment using EGSnrc/BEAMnrc Monte Carlo (MC) codes. Sensitivity analysis (SA) techniques were applied to study the significance of small alterations of field sizes (segments) on the IQM signal response. One hundred and eighty multileaf segments were analyzed with methods that include scatter plots (SP), brute force, variance-based (VAR), and standard regression coefficient SA...
2017: Computational and Mathematical Methods in Medicine
Eman Simbawa
Cancer treatment has developed over the years; however not all patients respond to this treatment, and therefore further research is needed. In this paper, we employ mathematical modeling to understand the behavior of cancer and its interaction with therapy. We study a drug delivery and drug-cell interaction model along with cell proliferation. Due to the fact that cancer cells grow when there are enough nutrients and oxygen, proliferation can be a barrier against a response to therapy. To understand the effect of this factor, we perform numerical simulations of the model for different values of the parameters with a continuous delivery of the drug...
2017: Computational and Mathematical Methods in Medicine
Pratchaya Chanprasopchai, Puntani Pongsumpun, I Ming Tang
The SEIR (Susceptible-Exposed-Infected-Recovered) model is used to describe the transmission of dengue virus. The main contribution is determining the role of the rainfall in Thailand in the model. The transmission of dengue disease is assumed to depend on the nature of the rainfall in Thailand. We analyze the dynamic transmission of dengue disease. The stability of the solution of the model is analyzed. It is investigated by using the Routh-Hurwitz criteria. We find two equilibrium states: a disease-free state and an endemic equilibrium state...
2017: Computational and Mathematical Methods in Medicine
J C Rangel-Reyes, J C Chimal-Eguía, E Castillo-Montiel
Therapeutic protocols in immunotherapy are usually proposed following the intuition and experience of the therapist. In order to deduce such protocols mathematical modeling, optimal control and simulations are used instead of the therapist's experience. Clinical efficacy of dendritic cell (DC) vaccines to cancer treatment is still unclear, since dendritic cells face several obstacles in the host environment, such as immunosuppression and poor transference to the lymph nodes reducing the vaccine effect. In view of that, we have created a mathematical murine model to measure the effects of dendritic cell injections admitting such obstacles...
2017: Computational and Mathematical Methods in Medicine
Lee Worden, Travis C Porco
We show that many structured epidemic models may be described using a straightforward product structure in this paper. Such products, derived from products of directed graphs, may represent useful refinements including geographic and demographic structure, age structure, gender, risk groups, or immunity status. Extension to multistrain dynamics, that is, pathogen heterogeneity, is also shown to be feasible in this framework. Systematic use of such products may aid in model development and exploration, can yield insight, and could form the basis of a systematic approach to numerical structural sensitivity analysis...
2017: Computational and Mathematical Methods in Medicine
Siming Tang, Wanbiao Ma, Peifan Bai
The Middle East respiratory syndrome (MERS) coronavirus, a newly identified pathogen, causes severe pneumonia in humans. MERS is caused by a coronavirus known as MERS-CoV, which attacks the respiratory system. The recently defined receptor for MERS-CoV, dipeptidyl peptidase 4 (DPP4), is generally expressed in endothelial and epithelial cells and has been shown to be present on cultured human nonciliated bronchiolar epithelium cells. In this paper, a class of novel four-dimensional dynamic model describing the infection of MERS-CoV is given, and then global stability of the equilibria of the model is discussed...
2017: Computational and Mathematical Methods in Medicine
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"