Read by QxMD icon Read

Integrative and Comparative Biology

Jacob R Withee, Sandra M Rehan
The genetic mechanisms behind aggressive behaviors are important for understanding the formation of dominance hierarchies, and thus social systems in general. Studies into the effects of social experience and agonistic contest outcomes have shown significant changes in brain gene expression resulting from repeated winning and losing, as well as changing dominance rank, primarily in obligately social species. However, our knowledge of the genetic underpinnings of behavior in subsocial organisms is relatively poor, yet understanding the behavioral genetics of this simplest form of sociality provides the basis for understanding all other forms of social living...
June 28, 2017: Integrative and Comparative Biology
Lauren B Buckley, Andrew J Arakaki, Anthony F Cannistra, Heather M Kharouba, Joel G Kingsolver
Historical data show that recent climate change has caused advances in seasonal timing (phenology) in many animals and plants, particularly in temperate and higher latitude regions. The population and fitness consequences of these phenological shifts for insects and other ectotherms have been heterogeneous: warming can increase development rates and the number of generations per year (increasing fitness), but can also lead to seasonal mismatches between animals and their resources and increase exposure to environmental variability (decreasing fitness)...
June 28, 2017: Integrative and Comparative Biology
Caleb D Phillips, John Hanson, Jeremy E Wilkinson, Lawrence Koenig, Eric Rees, Paul Webala, Tigga Kingston
Host-associated microbiomes are integral components of host health, but microbiome community structure varies among and within hosts. Reconciling community variability with the apparent dependence of hosts on community function, and characterizing how functional divergence proceeds across niches, remains challenging. Here, through the study of gut microbiomes and diets of three insectivorous bat species we characterize how community structure is shaped by predicted functional properties of community members...
June 28, 2017: Integrative and Comparative Biology
Sarah A Knutie, Lauren A Shea, Marinna Kupselaitis, Christina L Wilkinson, Kevin D Kohl, Jason R Rohr
Food resources can affect the health of organisms by altering their symbiotic microbiota and affecting energy reserves for host defenses against parasites. Different diets can vary in their macronutrient content and therefore they might favor certain bacterial communities of the host and affect the development and maintenance of the immune system, such as the inflammatory or antibody responses. Thus, testing the effect of diet, especially for animals with wide diet breadths, on host-associated microbiota and defenses against parasites might be important in determining infection and disease risk...
June 28, 2017: Integrative and Comparative Biology
M Denise Dearing, Kevin D Kohl
For decades, comparative biologists have recognized the importance of microbial partners in facilitating herbivory as a successful feeding strategy. Most of this success is attributed to the ability of gut microbes to digest recalcitrant dietary fiber and provides usable nutrients to their hosts. Gut microbes can also provide numerous other functions, such as vitamin synthesis, nitrogen recycling, and the detoxification of plant secondary compounds. Here, we review these microbial functions in herbivorous mammals and birds, highlighting studies that utilize recently developed metagenomic techniques...
June 28, 2017: Integrative and Comparative Biology
Thomas M Luhring, John P DeLong
The mean and variance of environmental temperature are changing as a consequence of human activities. Ectotherms are sensitive to these temperature changes in the short term, typically displaying a unimodal response of most biological rates to temperature (thermal performance curves; TPCs). Many organisms, however, may acclimate or evolve in response to new temperature regimes. In particular, population growth rate TPCs (r TPCs) reflect the ability to maintain positive growth under a range of temperatures, and therefore shifts in r TPCs due to acclimation are fundamental to our understanding of how ectotherms will respond to changes in climate...
June 28, 2017: Integrative and Comparative Biology
Simeon Lisovski, Marilyn Ramenofsky, John C Wingfield
Seasonality describes cyclic and largely predictable fluctuations in the environment. Such variations in day length, temperature, rainfall, and resource availability are ubiquitous and can exert strong selection pressure on organisms to adapt to seasonal environments. However, seasonal variations exhibit large scale geographical divergences caused by a whole suite of factors such as solar radiation, ocean currents, extent of continents, and topography. Realizing these contributions in driving patterns of overall seasonality may help advance our understanding of the kinds of evolutionary adaptations we should expect at a global scale...
June 28, 2017: Integrative and Comparative Biology
Kang Nian Yap, Mitchell W Serota, Tony D Williams
Many behaviors crucial for survival and reproductive success in free-living animals, including migration, foraging, and escaping from predators, involve elevated levels of physical activity. However, although there has been considerable interest in the physiological and biomechanical mechanisms that underpin individual variation in exercise performance, to date, much work on the physiology of exercise has been conducted in laboratory settings that are often quite removed from the animal's ecology. Here we review current, laboratory-based model systems for exercise (wind or swim tunnels for migration studies in birds and fishes, manipulation of exercise associated with non-migratory activity in birds, locomotion in lizards, and wheel running in rodents) to identify common physiological markers of individual variation in exercise capacity and/or costs of increased activity...
June 28, 2017: Integrative and Comparative Biology
Bret W Tobalske, Brandon E Jackson, Kenneth P Dial
Flight is the defining characteristic of birds, yet the mechanisms through which flight ability develops are only beginning to be understood. Wing-assisted incline running (WAIR) and controlled flapping descent (CFD) are behaviors that may offer significant adaptive benefits to developing birds. Recent research into these forms of locomotion has focused on species with precocial development, with a particularly rich data set from chukar partridge (Alectoris chukar). Here we briefly review the kinematics and aerodynamics of flight development in this species...
June 28, 2017: Integrative and Comparative Biology
Sarah E Gilman
Predicting the effects of climate change on species and communities remains a pre-eminent challenge for biologists. Critical among this is understanding the indirect effects of climate change, which arise when the direct, physiological effects of climate on one species change the outcome of its interaction with a second species, altering the success of the second species. A diverse array of approaches to predicting indirect effects exists from mechanistic models, which attempt to build-up from physiological changes to ecological consequences, to ecological models that focus solely on the ecological scale...
June 23, 2017: Integrative and Comparative Biology
Corrie S Moreau, Benjamin E R Rubin
Identifying the factors that structure host-associated microbiota is critical to understand the role these microbes may play in host ecology and evolutionary history. To begin to address this question we investigate the diversity and persistence of the bacterial community of the giant Neotropical bullet ant, Paraponera clavata. We included samples from four widely dispersed locations to address the role geography plays in shaping these communities. To understand how the digestive tract can filter bacterial communities, we sampled mouth and gut communities...
June 23, 2017: Integrative and Comparative Biology
Wendy Saltzman, Breanna N Harris, Trynke R De Jong, Juan P Perea-Rodriguez, Nathan D Horrell, Meng Zhao, Jacob R Andrew
Parental care by fathers, although rare among mmmals, can be essential for the survival and normal development of offspring in biparental species. A growing body of research on biparental rodents has identified several developmental and experiential influences on paternal responsiveness. Some of these factors, such as pubertal maturation, interactions with pups, and cues from a pregnant mate, contribute to pronounced changes in paternal responsiveness across the course of the lifetime in individual males. Others, particularly intrauterine position during gestation and parental care received during postnatal development, can have long-term effects on paternal behavior and contribute to stable differences among individuals within a species...
June 21, 2017: Integrative and Comparative Biology
H Frederik Nijhout, Kenneth Z McKenna
Morphological novelty is often thought of as the evolution of an entirely new body plan or the addition of new structures to existing body plans. However, novel morphologies may also arise through modification of organ systems within an existing body plan. The evolution of novel scaling relationships between body size and organ size constitutes such a novel morphological feature. Experimental studies have demonstrated that there is genetic variation for allometries and that scaling relationships can evolve under artificial selection...
June 16, 2017: Integrative and Comparative Biology
Ryan C Taylor, Rachel A Page, Barrett A Klein, Michael J Ryan, Kimberly L Hunter
Multimodal signaling is common in communication systems. Depending on the species, individual signal components may be produced synchronously as a result of physiological constraint (fixed) or each component may be produced independently (fluid) in time. For animals that rely on fixed signals, a basic prediction is that asynchrony between the components should degrade the perception of signal salience, reducing receiver response. Male tĂșngara frogs, Physalaemus pustulosus, produce a fixed multisensory courtship signal by vocalizing with two call components (whines and chucks) and inflating a vocal sac (visual component)...
June 5, 2017: Integrative and Comparative Biology
Melanie J Hopkins
Trilobites offer one of the best fossil records of any arthropod group. This is due to a number of factors, most notably the combination of (1) having inhabited areas where organisms are more likely to be buried and ultimately fossilized; and (2) having had a highly biomineralized exoskeleton more likely to survive the stresses of fossilization. This biomineralized exoskeleton was also morphologically complex, bearing traits that had ecological significance, and was present throughout postembryonic development, from larval to adult stages...
June 5, 2017: Integrative and Comparative Biology
Aida Verdes, David F Gruber
Bioluminescence, the ability to produce light by living organisms, has evolved independently in numerous lineages across the tree of life. Luminous forms are found in a wide range of taxonomic groups from bacteria to vertebrates, although the great majority of bioluminescent organisms are marine taxa. Within the phylum Annelida, bioluminescence is widespread, present in at least 98 terrestrial and marine species that represent 45 genera distributed in thirteen lineages of clitellates and polychaetes. The ecological diversity of luminous annelids is unparalleled, with species occupying a great variety of habitats including both terrestrial and marine ecosystems, from coastal waters to the deep-sea, in benthic and pelagic habitats from polar to tropical regions...
June 3, 2017: Integrative and Comparative Biology
Sarah Jaumann, Emilie C Snell-Rood
High conspecific densities are associated with increased levels of intraspecific competition and a variety of negative effects on performance. However, changes in life history strategy could compensate for some of these effects. For instance, females in crowded conditions often have fewer total offspring, but they may invest more in each one. Such investment could include the production of larger offspring, more time spent engaging in parental care, or more choosy decisions about where offspring are placed...
June 3, 2017: Integrative and Comparative Biology
Molly M Ashur, Nicole K Johnston, Danielle L Dixson
Ocean acidification has been identified as a major contributor to ocean ecosystem decline, impacting the calcification, survival, and behavior of marine organisms. Numerous studies have observed altered sensory perception of chemical, auditory, and visual cues after exposure to elevated CO2. Sensory systems enable the observation of the external environment and therefore play a critical role in survival, communication, and behavior of marine organisms. This review seeks to (1) summarize the current knowledge of sensory impairment caused by ocean acidification, (2) discuss potential mechanisms behind this disruption, and (3) analyze the expected taxa differences in sensitivities to elevated CO2 conditions...
May 29, 2017: Integrative and Comparative Biology
Sarah E Diamond, Lacy Chick, Clint A Penick, Lauren M Nichols, Sara Helms Cahan, Robert R Dunn, Aaron M Ellison, Nathan J Sanders, Nicholas J Gotelli
Few studies have quantified the relative importance of direct effects of climate change on communities versus indirect effects that are mediated thorough species interactions, and the limited evidence is conflicting. Trait-based approaches have been popular in studies of climate change, but can they be used to estimate direct versus indirect effects? At the species level, thermal tolerance is a trait that is often used to predict winners and losers under scenarios of climate change. But thermal tolerance might also inform when species interactions are likely to be important because only subsets of species will be able to exploit the available warmer climatic niche space, and competition may intensify in the remaining, compressed cooler climatic niche space...
May 24, 2017: Integrative and Comparative Biology
Chelsea A Weitekamp, Jessica Nguyen, Hans A Hofmann
In response to a territory intrusion, neighboring males of the African cichlid fish Astatotilapia burtoni engage in aggressive joint territory defense in a manner that depends on their social role. Here, we examine the possible function of several neuroendocrine and neuromodulator pathways previously implicated in the regulation of complex social behavior. We find that the neuromolecular regulation of aggression during joint territory defense is very much dependent on an individual's role in this context. In neighbors but not in residents, aggression is correlated to gene expression in the medial part of the dorsal telencephalon (area Dm), the putative homolog to the mammalian basolateral amygdala...
May 19, 2017: Integrative and Comparative Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"