Read by QxMD icon Read

Ecology Letters

Bo Zhang, Alex Kula, Keenan M L Mack, Lu Zhai, Arrix L Ryce, Wei-Ming Ni, Donald L DeAngelis, J David Van Dyken
A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K...
July 16, 2017: Ecology Letters
Manuel Massot, Stéphane Legendre, Pierre Fédérici, Jean Clobert
The most documented response of organisms to climate warming is a change in the average timing of seasonal activities (phenology). Although we know that these average changes can differ among species and populations, we do not know whether climate warming impacts within-population variation in phenology. Using data from five study sites collected during a 13-year survey, we found that the increase in spring temperatures is associated with a reproductive advance of 10 days in natural populations of common lizards (Zootoca vivipara)...
July 16, 2017: Ecology Letters
Genoveva Rodríguez-Castañeda, Anouschka R Hof, Roland Jansson
While the environmental correlates of global patterns in standing species richness are well understood, it is poorly known which environmental factors promote diversification (speciation minus extinction) in clades. We tested several hypotheses for how geographic and climatic variables should affect diversification using a large dataset of bird sister genera endemic to the New World. We found support for the area, evolutionary speed, environmental predictability and climatic stability hypotheses, but productivity and topographic complexity were rejected as explanations...
July 13, 2017: Ecology Letters
Ryan D Batt, James W Morley, Rebecca L Selden, Morgan W Tingley, Malin L Pinsky
Species richness has long been used as an indicator of ecosystem functioning and health. Global richness is declining, but it is unclear whether sub-global trends differ. Regional trends are especially understudied, with most focused on island regions where richness is strongly impacted by novel colonisations. We addressed this knowledge gap by testing for multi-decade trends in species richness in nine open marine regions around North America (197 region-years) while accounting for imperfect observations and grounding our findings in species-level range dynamics...
July 11, 2017: Ecology Letters
Jennifer C Perry, Colin J Garroway, Locke Rowe
Some of the strongest examples of a sexual 'arms race' come from observations of correlated evolution in sexually antagonistic traits among populations. However, it remains unclear whether these cases truly represent sexually antagonistic coevolution; alternatively, ecological or neutral processes might also drive correlated evolution. To investigate these alternatives, we evaluated the contributions of intersex genetic correlations, ecological context, neutral genetic divergence and sexual coevolution in the correlated evolution of antagonistic traits among populations of Gerris incognitus water striders...
July 6, 2017: Ecology Letters
Xiangtao Xu, David Medvigy, Stuart Joseph Wright, Kaoru Kitajima, Jin Wu, Loren P Albert, Giordane A Martins, Scott R Saleska, Stephen W Pacala
Leaf longevity (LL) varies more than 20-fold in tropical evergreen forests, but it remains unclear how to capture these variations using predictive models. Current theories of LL that are based on carbon optimisation principles are challenging to quantitatively assess because of uncertainty across species in the 'ageing rate:' the rate at which leaf photosynthetic capacity declines with age. Here, we present a meta-analysis of 49 species across temperate and tropical biomes, demonstrating that the ageing rate of photosynthetic capacity is positively correlated with the mass-based carboxylation rate of mature leaves...
July 4, 2017: Ecology Letters
Briana K Whitaker, Jonathan T Bauer, James D Bever, Keith Clay
Over the past 25 years, the plant-soil feedback (PSF) framework has catalyzed our understanding of how belowground microbiota impact plant fitness and species coexistence. Here, we apply a novel extension of this framework to microbiota associated with aboveground tissues, termed 'plant-phyllosphere feedback (PPFs)'. In parallel greenhouse experiments, rhizosphere and phyllosphere microbiota of con- and heterospecific hosts from four species were independently manipulated. In a third experiment, we tested the combined effects of soil and phyllosphere feedback under field conditions...
July 4, 2017: Ecology Letters
Devin R Leopold, J Paula Wilkie, Ian A Dickie, Robert B Allen, Peter K Buchanan, Tadashi Fukami
Both top-down (grazing) and bottom-up (resource availability) forces can determine the strength of priority effects, or the effects of species arrival history on the structure and function of ecological communities, but their combined influences remain unresolved. To test for such influences, we assembled experimental communities of wood-decomposing fungi using a factorial manipulation of fungivore (Folsomia candida) presence, nitrogen availability, and fungal assembly history. We found interactive effects of all three factors on fungal species composition and wood decomposition 1 year after the fungi were introduced...
July 4, 2017: Ecology Letters
Daniel S Maynard, Thomas W Crowther, Mark A Bradford
The efficiency by which fungi decompose organic matter contributes to the amount of carbon that is retained in biomass vs. lost to the atmosphere as respiration. This carbon use efficiency (CUE) is affected by various abiotic conditions, including temperature and nutrient availability. Theoretically, the physiological costs of interspecific interactions should likewise alter CUE, yet the magnitude of these costs is untested. Here we conduct a microcosm experiment to quantify how interactions among wood-decay basidiomycete fungi alter growth, respiration and CUE across a temperature and nitrogen gradient...
July 4, 2017: Ecology Letters
Benjamin N Sulman, Edward R Brzostek, Chiara Medici, Elena Shevliakova, Duncan N L Menge, Richard P Phillips
Ecosystem carbon (C) balance is hypothesised to be sensitive to the mycorrhizal strategies that plants use to acquire nutrients. To test this idea, we coupled an optimality-based plant nitrogen (N) acquisition model with a microbe-focused soil organic matter (SOM) model. The model accurately predicted rhizosphere processes and C-N dynamics across a gradient of stands varying in their relative abundance of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) trees. When mycorrhizal dominance was switched - ECM trees dominating plots previously occupied by AM trees, and vice versa - legacy effects were apparent, with consequences for both C and N stocks in soil...
July 2, 2017: Ecology Letters
Benjamin G Van Allen, Nick L Rasmussen, Christopher J Dibble, Patrick A Clay, Volker H W Rudolf
Natural ecosystems are shaped along two fundamental axes, space and time, but how biodiversity is partitioned along both axes is not well understood. Here, we show that the relationship between temporal and spatial biodiversity patterns can vary predictably according to habitat characteristics. By quantifying seasonal and annual changes in larval dragonfly communities across a natural predation gradient we demonstrate that variation in the identity of top predator species is associated with systematic differences in spatio-temporal β-diversity patterns, leading to consistent differences in relative partitioning of biodiversity between time and space across habitats...
June 30, 2017: Ecology Letters
Nicolas Alcala, Tania Jenkins, Philippe Christe, Séverine Vuilleumier
Host shifts can cause novel infectious diseases, and is a key process in diversification. Disentangling the effects of host shift vs. those of cospeciation is non-trivial as both can result in phylogenic congruence. We develop a new framework based on network analysis and Approximate Bayesian Computation to quantify host shift and cospeciation rates in host-parasite systems. Our method enables estimation of the expected time to the next host shift or cospeciation event. We then apply it to avian haemosporidian parasite systems and to the pocket gophers-chewing lice system, and demonstrate that both host shift and cospeciation can be reliably estimated by our method...
June 29, 2017: Ecology Letters
Laura E Dee, Michel De Lara, Christopher Costello, Steven D Gaines
Society increasingly focuses on managing nature for the services it provides people rather than for the existence of particular species. How much biodiversity protection would result from this modified focus? Although biodiversity contributes to ecosystem services, the details of which species are critical, and whether they will go functionally extinct in the future, are fraught with uncertainty. Explicitly considering this uncertainty, we develop an analytical framework to determine how much biodiversity protection would arise solely from optimising net value from an ecosystem service...
June 28, 2017: Ecology Letters
Jean P Gibert, Rachel L Allen, Ron J Hruska Iii, John P DeLong
Population dynamics and species persistence are often mediated by species traits. Yet many important traits, like body size, can be set by resource availability and predation risk. Environmentally induced changes in resource levels or predation risk may thus have downstream ecological consequences. Here, we assess whether quantity and type of resources affect the phenotype, the population dynamics, and the susceptibility to predation of a mixotrophic protist through experiments and a model. We show that cell shape, but not size, changes with resource levels and type, and is linked to carrying capacity, thus affecting population dynamics...
June 27, 2017: Ecology Letters
Marc W Cadotte
The ability to explain why multispecies assemblages produce greater biomass compared to monocultures, has been a central goal in the quest to understand biodiversity effects on ecosystem function. Species contributions to ecosystem function can be driven by two processes: niche complementarity and a selection effect that is influenced by fitness (competitive) differences, and both can be approximated with measures of species' traits. It has been hypothesised that fitness differences are associated with few, singular traits while complementarity requires multidimensional trait measures...
June 22, 2017: Ecology Letters
Sally A Bracewell, Emma L Johnston, Graeme F Clark
Theories of species coexistence often describe a trade-off between colonising and competitive abilities. In sessile marine invertebrates, this trade-off can manifest as trends in species distributions relative to the size of isolated patches of substrate. Based on their abilities to find available substrate and competitively exclude neighbours, good colonisers tend to dominate smaller patches, whereas better competitors tend to monopolise larger patches. In theory, species with equivalent colonising and competitive abilities should display similar distributions across patch sizes...
June 21, 2017: Ecology Letters
Frédéric Barraquand, Stilianos Louca, Karen C Abbott, Christina A Cobbold, Flora Cordoleani, Donald L DeAngelis, Bret D Elderd, Jeremy W Fox, Priscilla Greenwood, Frank M Hilker, Dennis L Murray, Christopher R Stieha, Rachel A Taylor, Kelsey Vitense, Gail S K Wolkowicz, Rebecca C Tyson
Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer-resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics...
June 20, 2017: Ecology Letters
Lee Hsiang Liow, Emanuela Di Martino, Malgorzata Krzeminska, Mali Ramsfjell, Seabourne Rust, Paul D Taylor, Kjetil L Voje
Competition is an important biotic interaction that influences survival and reproduction. While competition on ecological timescales has received great attention, little is known about competition on evolutionary timescales. Do competitive abilities change over hundreds of thousands to millions of years? Can we predict competitive outcomes using phenotypic traits? How much do traits that confer competitive advantage and competitive outcomes change? Here we show, using communities of encrusting marine bryozoans spanning more than 2 million years, that size is a significant determinant of overgrowth outcomes: colonies with larger zooids tend to overgrow colonies with smaller zooids...
June 14, 2017: Ecology Letters
Anna M Csergő, Roberto Salguero-Gómez, Olivier Broennimann, Shaun R Coutts, Antoine Guisan, Amy L Angert, Erik Welk, Iain Stott, Brian J Enquist, Brian McGill, Jens-Christian Svenning, Cyrille Violle, Yvonne M Buckley
Correlative species distribution models are based on the observed relationship between species' occurrence and macroclimate or other environmental variables. In climates predicted less favourable populations are expected to decline, and in favourable climates they are expected to persist. However, little comparative empirical support exists for a relationship between predicted climate suitability and population performance. We found that the performance of 93 populations of 34 plant species worldwide - as measured by in situ population growth rate, its temporal variation and extinction risk - was not correlated with climate suitability...
June 13, 2017: Ecology Letters
Andrew T Tredennick, Peter B Adler, Frederick R Adler
Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation-dependent coexistence may explain deviations from the expected negative diversity-ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer-resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability...
June 9, 2017: Ecology Letters
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"