Read by QxMD icon Read

Arthropod Structure & Development

Nina Alexeeva, Yuta Tamberg, Natalia Shunatova
Sea spiders form a small, enigmatic group of recent chelicerates, with an unusual bodyplan, oligosegmented larvae and a postembryonic development that is punctuated by many moults. To date, only a few papers examined the anatomical and ultrastructural modifications of the larvae and various instars. Here we traced both internal and external events of the whole postembryonic development in Nymphon brevirostre HODGE 1863 using histology, SEM, TEM and confocal microscopy. During postembryonic development, larvae of this species undergo massive reorganization: spinning apparatus and chelar glands disappear; larval legs redifferentiate; three new segments and abdomen are formed with their corresponding internal organs and appendages; circulatory and reproductive systems develop anew and the digestive and the nervous systems change dramatically...
March 7, 2018: Arthropod Structure & Development
Hiroki Takai, Kiyoshi Asaoka, Fumiko Ishizuna, Takashi Kiuchi, Susumu Katsuma, Toru Shimada
Gustatory and olfactory senses of phytophagous insects play important roles in the recognition of host plants. In the domestic silkmoth Bombyx mori and its wild species Bombyx mandarina, the morphologies and responses of adult olfactory organs (antennae) have been intensely investigated. However, little is known about these features of adult gustatory organs and the influence of domestication on the gustatory sense. Here we revealed that both species have two types of sensilla (thick [T] and slim [S] types) on the fifth tarsomeres of the adult legs...
March 5, 2018: Arthropod Structure & Development
Konstantin Nadein, Oliver Betz
We describe the kinematics and performance of the natural jump in the weevil Orchestes fagi (Fabricius, 1801) (Coleoptera: Curculionidae) and its jumping apparatus with underlying anatomy and functional morphology. In weevils, jumping is performed by the hind legs and involves the extension of the hind tibia. The principal structural elements of the jumping apparatus are (1) the femoro-tibial joint, (2) the metafemoral extensor tendon, (3) the extensor ligament, (4) the flexor ligament, (5) the tibial flexor sclerite and (6) the extensor and flexor muscles...
February 26, 2018: Arthropod Structure & Development
Jan Philip Oeyen, Thomas Wesener
The pill millipedes of the order Glomerida are a moderately diverse group with a classical Holarctic distribution pattern. Their classification is based on a typological system utilizing mainly a single character complex, the male telopods. In order to infer the apomorphies of the Glomerida, to elucidate its position in the Pentazonia, and to test the monophyly of its families and subfamilies, we conduct the first phylogenetic analysis of the order. To provide additional characters, we comparatively analyze the mandible using scanning electron microscopy...
February 22, 2018: Arthropod Structure & Development
Miwa Sugimoto, Naoki Ogawa, Kazunori Yoshizawa
The elytral base sclerites (= sclerites located at the articular region between the forewing and thorax in Coleoptera) of selected taxa were examined and homologized. Although the elytral base sclerites are highly modified compared to the wing base sclerites of the other neopterans, they can be homologized by using the conservative wing flapping and folding lines as landmarks. A reduction of the first axillary sclerite was identified as a general trend of the elytral base sclerites, although the sclerite usually has a very important function to mediate flight power from the notum to the wing...
February 13, 2018: Arthropod Structure & Development
Konrad Stolz, Johannes Strauß, Joscha Arne Alt, Reinhard Lakes-Harlan
This study investigates the neuroanatomy of the defense gland and a related muscle in the stick insect Peruphasma schultei with axonal tracing and histological sections. The gland is innervated by three neurons through the Nervus anterior of the suboesophageal ganglion (SOG), the ipsilateral neuron (ILN), the contralateral neuron (CLN) and the prothoracic intersegmental neuron (PIN). The ILN has a large soma which is typical for motoneurons that cause fast contraction of large muscles and its dendrites are located in motor-sensory and sensory neuropile areas of the SOG...
February 10, 2018: Arthropod Structure & Development
Qi-Hui Lyu, Bei-Bei Zhang, Bao-Zhen Hua
The fine structure of the seminal vesicle and reproductive accessory glands was investigated in Bittacidae of Mecoptera using light and transmission electron microscopy. The male reproductive system of Bittacidae mainly consists of a pair of testes, a pair of vasa deferentia, and an ejaculatory sac. The vas deferens is greatly expanded for its middle and medio-posterior parts to form a well-developed seminal vesicle. The seminal vesicle is composed of layers of developed muscles and a mono-layered epithelium surrounding the small central lumen...
February 6, 2018: Arthropod Structure & Development
Stephan Scholz, Stefan Richter, Christian S Wirkner
We present a study of the hemolymph vascular system of the marbled crayfish, Procambarus fallax f. virginalis, the only crayfish species known to be parthenogenetic. To identify potential evolutionary patterns, we compared data from a total of 48 specimens of P. fallax with 22 specimens of Orconectes limosus. Visualizations (2D and 3D) were carried out using a combination of classical and modern morphological techniques. Our data were compared to the existing literature. Like all Decapoda, both P. fallax and O...
February 5, 2018: Arthropod Structure & Development
Miloš Vittori, Mohammed Khurshed, Daisy I Picavet, Cornelis J F van Noorden, Jasna Štrus
Calcium bodies are internal epithelial sacs found in terrestrial isopods of the family Trichoniscidae that contain a mineralized extracellular matrix that is deposited and resorbed in relation to the molt cycle. Calcium bodies in several trichoniscids are filled with bacteria, the function of which is currently unknown. The woodlouse Hyloniscus riparius differs from other trichoniscids in that it possesses two different pairs of calcium bodies, the posterior pair being filled with bacteria and the anterior pair being devoid of bacteria...
February 5, 2018: Arthropod Structure & Development
Roger D Farley
Light and transmission electron microscopy were used to study the development of new book lung lamellae in juvenile and adult spiders (Parasteatoda tepidariorum). As hypothesized earlier in a study of embryos, mesenchyme cells dispersed throughout the opisthosoma (EMT) are a likely source of precursor epithelial cells (MET) for the new lamellae. The precursor cells in juveniles and adults continue many of the complex activities observed in embryos, e.g., migration, alignment, lumen formation, thinning, elongation, and secretion of the cuticle of air channel walls and trabeculae...
January 13, 2018: Arthropod Structure & Development
H Rajabi, K Stamm, E Appel, S N Gorb
Adult dragonflies can be divided into two major groups, perchers and fliers, exhibiting notably different flight behaviour. Previous studies have yielded conflicting results regarding the link between the wing macro-morphology and flight style in these two groups. In this study, we present the first systematic investigation of the micro-morphological differences of wings of percher and flier dragonflies in four closely related species from the family Libellulidae. Our results suggest that the shape and material composition of wing microstructural components and, in particular, the nodus are adapted to facilitate the specific wing functioning in fliers and perchers...
January 12, 2018: Arthropod Structure & Development
Anne-Sarah Ganske, Gabriele Uhl
Spiders show a wide range of sensory capabilities as evidenced by behavioural observations. Accordingly, spiders possess diverse sensory structures like mechano-, hygro-, thermo- or chemoreceptive sensilla. As to chemoreceptive structures, only trichoid tip-pore sensilla were found so far that were tested for gustation. That spiders are also able to receive airborne signals is corroborated by numerous behavioural experiments but the responsible structures have not been determined yet. Here, we provide sensilla distribution maps of pedipalps and walking legs of both sexes of the wasp spider Argiope bruennichi whose biology and mating system is well explored...
January 6, 2018: Arthropod Structure & Development
Alexander Steinbrecht, Nicholas Strausfeld, Gerhard Scholtz
No abstract text is available yet for this article.
January 2018: Arthropod Structure & Development
Stanislav I Melnitsky, Vladimir D Ivanov, Mikhail Yu Valuyskiy, Lydia V Zueva, Marianna I Zhukovskaya
Structure and distribution of sensilla were studied in sixteen species of the caddisfly family Philopotamidae. Their antennae bear numerous curved trichoid and pseudoplacoid sensilla and fewer coronal, styloconic and chaetoid sensilla on the flagellar segments. The most numerous pseudoplacoid sensilla have non-specific localization. The curved trichoid sensilla form clusters ventrally on each antennal segment. Sensilla belonging to coronal, styloconic and chaetoid types have specific positions. Long grooved trichoid sensilla are located nonspecifically in all the studied species...
January 2018: Arthropod Structure & Development
Juliane Vehof, Gerhard Scholtz, Carola Becker
Two fundamentally different sperm storage organs occur in Brachyura. The probably paraphyletic podotremes show intersegmental spermathecae, which are distant from oviducts and coxal gonopores. Hence, fertilization is external. In contrast to this, the seminal receptacles of Eubrachyura are directly connected with the ovaries. Thus, at least initial fertilization is internal. This pattern has been interpreted as an apomorphy of Eubrachyura. To test this hypothesis, we studied the morphology of the reproductive organs of Paradorippe granulata, a representative of the putatively early diverging eubrachyuran lineage Dorippoidea...
January 2018: Arthropod Structure & Development
Russell D C Bicknell, John R Paterson, Jean-Bernard Caron, Christian B Skovsted
Gnathobasic spines are located on the protopodal segments of the appendages of various euarthropod taxa, notably chelicerates. Although they are used to crush shells and masticate soft food items, the microstructure of these spines are relatively poorly known in both extant and extinct forms. Here we compare the gnathobasic spine microstructures of the Silurian eurypterid Eurypterus tetragonophthalmus from Estonia and the Cambrian artiopodan Sidneyiainexpectans from Canada with those of the Recent xiphosuran chelicerate Limulus polyphemus to infer potential variations in functional morphology through time...
January 2018: Arthropod Structure & Development
Werner Gnatzy, Walter Volknandt, Anja Dzwoneck
For providing their offspring females of the digger wasp species Ampulex compressa hunt cockroaches, paralyze them and attach as a rule one egg to the coxa of one of the mid legs of their prey. We observed the egg-laying behavior and examined with light- and scanning microscopy (i) nearly mature eggs from ovaries of freshly dissected females and (ii) eggs immediately after their deposition on the coxae of their prey. The length of the white bean-shaped eggs varied between 2.2 and 3.0 mm, their diameter between 0...
January 2018: Arthropod Structure & Development
Henrik Enghoff, Laura Mark Jensen, Elena V Mikhaljova
A unique pattern of missing defence glands on certain body rings is described for two species of the millipede family Mongoliulidae, order Julida: Ussuriiulus pilifer Golovatch, 1980, and Koiulus interruptus Enghoff et al., 2017. Based on the patterns of missing glands observed in recently collected samples of the two species, numbers of podous and apodous body rings in successive stadia of the postembryonic development can be inferred for each individual millipede, which in turn allows the reconstruction of pathways of anamorphosis in these species...
January 2018: Arthropod Structure & Development
Aurora Montali, Davide Romanelli, Silvia Cappellozza, Annalisa Grimaldi, Magda de Eguileor, Gianluca Tettamanti
No abstract text is available yet for this article.
January 2018: Arthropod Structure & Development
Silvana Piersanti, Manuela Rebora
The larval antennal sensilla of two Zygoptera species, Calopteryx haemorroidalis (Calopterygidae) and Ischnura elegans (Coenagrionidae) are investigated with SEM and TEM. These two species have different antennae (geniculate, setaceous) and live in different environments (lotic, lentic waters). Notwithstanding this, similarities in the kind and distribution of sensilla are outlined: in both species the majority of sensilla types is located on the apical portion of the antenna, namely a composed coeloconic sensillum (possible chemoreceptor), two other coeloconic sensilla (possible thermo-hygroreceptors) and an apical seta (direct contact mechanoreceptor)...
January 2018: Arthropod Structure & Development
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"