Read by QxMD icon Read

Current Opinion in Plant Biology

Elizabeth S Haswell, Ram Dixit
No abstract text is available yet for this article.
November 6, 2018: Current Opinion in Plant Biology
Laura A Moody
The colonization of land by plants coincided with and was most likely facilitated by the evolution of 3-dimensional (3D) growth. 3D growth is a pivotal feature of all land plants, but most develop in a way that precludes genetic investigation. In the moss Physcomitrella patens, 3D growth (gametophores) is preceded by an extended 2-dimensional (2D) growth phase (protonemata) that can be propagated indefinitely. Studies using P. patens have thus elucidated some of the molecular mechanisms underlying 3D growth regulation...
November 3, 2018: Current Opinion in Plant Biology
Chiara A Airoldi, Jordan Ferria, Beverley J Glover
While the pathways that produce plant pigments have been well studied for decades, the use by plants of nanoscale structures to produce colour effects has only recently begun to be studied. A variety of plants from across the plant kingdom have been shown to use different mechanism to generate structural colours in tissues as diverse as leaves, flowers and fruits. In this review we explore the cellular mechanisms by which these nanoscale structures are built and discuss the first insights that have been published into the genetic pathways underpinning these traits...
October 25, 2018: Current Opinion in Plant Biology
Joseph L Hill, Courtney A Hollender
Directional growth in all plants involves both phototropic and gravitropic responses. Accordingly, mechanisms controlling shoot architecture throughout the plant kingdom are likely similar. However, as forms vary between species due in part to gene copy number and functional divergence, some aspects of how plants predetermine and regulate architecture can differ. This is especially true when comparing annual herbaceous species (e.g. model plants) to woody perennials such as trees. In the past decade, inexpensive genomic sequencing and technological advances enabled gene discovery and functional analyses in trees...
October 16, 2018: Current Opinion in Plant Biology
John L Bowman, Liam N Briginshaw, Tom J Fisher, Eduardo Flores-Sandoval
The evolution of land plants from a charophycean algal ancestor was accompanied by an increased diversity of regulatory networks, including signaling pathways mediating cellular communication within plants and between plants and the environment. Canonical land plant hormone signaling pathways were originally identified in angiosperms, and comparative studies in basal taxa show that they have been assembled from both ancient and newly evolved components, both before and during land plant evolution. In this review we present our current understanding, and highlight several uncertainties, of the evolution of hormone signaling pathways, focusing on the biosynthetic pathways generating putative ligands and the downstream perception and signaling pathways often leading to transcriptional responses...
October 16, 2018: Current Opinion in Plant Biology
Michel Ruiz Rosquete, Georgia Drakakaki
The cellular responses to abiotic and biotic stress rely on the regulation of vesicle trafficking to ensure the correct localization of proteins specialized in sensing stress stimuli and effecting the response. Several studies have implicated the plant trans-Golgi network (TGN)-mediated trafficking in different types of biotic and abiotic stress responses; however, the underlying molecular mechanisms are poorly understood. Further, the identity, specialization and stress-relevant cargo transported by the TGN subcompartments involved in stress responses await more in depth characterization...
October 10, 2018: Current Opinion in Plant Biology
Daniel Kierzkowski, Anne-Lise Routier-Kierzkowska
The growth of individual cells underlies the development of biological forms. In plants, cells are interconnected by rigid walls, fixing their position with respect to one another and generating mechanical feedbacks between cells. Current research is shedding new light on how plant growth is controlled by physical inputs at the level of individual cells and growing tissues. In this review, we discuss recent progress in our understanding of the cellular basis of growth from a biomechanical perspective. We describe the role of the cell wall and turgor pressure in growth and highlight the often-overlooked role of cell geometry in this process...
October 8, 2018: Current Opinion in Plant Biology
Cristina Martínez, Cristina Nieto, Salomé Prat
The ability of plants to sense and integrate daily and seasonal changes in light and temperature and to adjust their growth and development accordingly, is critical to withstand severe weather oscillations in a year. While molecular mechanisms controlling light responses are relatively well established, those involved in the perception and response to temperature are just beginning to be understood. Phytochromes emerged as major temperature sensors; due to warmer temperatures accelerate the dark reversal reaction to the Pr inactive state...
September 28, 2018: Current Opinion in Plant Biology
Javier Fernando Palatnik, Jorge José Casal
No abstract text is available yet for this article.
September 28, 2018: Current Opinion in Plant Biology
Xinxin Ding, Xiaoguo Zhang, Marisa S Otegui
Autophagy mediates the delivery of cytoplasmic content to vacuoles or lysosomes for degradation or storage. The best characterized autophagy route called macroautophagy involves the sequestration of cargo in double-membrane autophagosomes and is conserved in eukaryotes, including plants. Recently, several new receptors, some of them plant-specific, that select cargo for macroautophagy have been identified. Some of these receptors appear to participate in regulation of competing catabolic pathways, for example proteasome-mediated versus autophagic degradation under specific stress conditions...
September 26, 2018: Current Opinion in Plant Biology
Michelle R Facette, Carolyn G Rasmussen, Jaimie M Van Norman
Development requires precise cell positioning and tissue organization to generate functional organs and viable organisms. Plant development depends on precisely oriented cell divisions, which are typically classified as either asymmetric or symmetric. Asymmetric (formative) cell divisions give rise to cells with two distinct fates; resulting daughter cells often have different sizes or shapes. Symmetric (proliferative) cell divisions give rise to two identical daughter cells. The orientation of the division plane in both symmetric and asymmetric cell divisions is tightly controlled by a combination of cues both intrinsic, occurring within the cell; and extrinsic, originating outside the cell...
September 24, 2018: Current Opinion in Plant Biology
Markus Geisler
Recently, the plant transport field has shifted their research focus toward a more integrative investigation of transport networks thought to provide the basis for long-range transport routes. Substantial progress was provided by of a series of elegant techniques that allow for a visualization or prediction of substrate movements in plant tissues in contrast to established quantitative methods offering low spatial resolution. These methods are critically evaluated in respect to their spatio-temporal resolution, invasiveness, dynamics and overall quality...
September 22, 2018: Current Opinion in Plant Biology
Gen Che, Xiaolan Zhang
Cucumber (Cucumis sativus L.) is an economically important vegetable crop that is cultivated worldwide. Compared to the wild ancestor bearing small, bitter and seedy fruit, domesticated cucumbers exhibit significant variation in fruit appearance, size and flavor. Understanding the molecular basis of domestication related traits can provide insights into fruit evolution and make crop breeding more efficient. Here we review recent advances in relating to the genetic basis of fruit morphological traits (femaleness, fruit spine, wart, size, color and carpel development) and organoleptic features (bitterness) during cucumber domestication...
September 22, 2018: Current Opinion in Plant Biology
Shinya Hagihara, Ryotaro Yamada, Kenichiro Itami, Keiko U Torii
Synthetic molecules can be powerful tools to overcome the limitations of the biological approaches. Especially redundancy, lethality, and intractability of the target genes, which often hamper the progress of plant science, could be bypassed by elaborately designed small molecules. In this review, we discuss how synthetic chemistry can contribute to increasing our understanding of plant hormone signaling. Specific focus will be on the visualization and hijacking of hormone signaling with novel synthetic chemicals, with emphasis on perception of ABA, strigolactones, and auxins...
September 21, 2018: Current Opinion in Plant Biology
David Edwards
No abstract text is available yet for this article.
September 19, 2018: Current Opinion in Plant Biology
Bosheng Li, Huihui Wu, Hongwei Guo
The decay of mRNA in plants is tightly controlled and shapes the transcriptome. The roles of this process are to digest RNA as well as to suppress exogenous and endogenous gene silencing by preventing siRNA generation. Recent evidence suggests that mRNA decay also regulates the accumulation of the putative 3' fragment-derived long non-coding RNAs (3'lncRNAs). The generation of siRNA or 3'lncRNA from a selective subset of mRNAs raises a fundamental question of how the mRNA decay machineries select and determine their substrate transcripts for distinctive decay destiny...
September 14, 2018: Current Opinion in Plant Biology
Kavitha Sarvepalli, Mainak Das Gupta, Krishna Reddy Challa, Utpal Nath
Organ elaboration in plants occurs almost exclusively by an increase in cell number and size. Leaves, the planar lateral appendages of plants, are no exception. Forward and reverse genetic approaches have identified several genes whose role in leaf morphogenesis has been inferred from their primary effect on cell number and size, thereby distinguishing them as either promoters or inhibitors of cell proliferation and expansion. While such classification is useful in studying size control, a similar link between genes and shape generation is poorly understood...
September 14, 2018: Current Opinion in Plant Biology
Minako Ueda, Frédéric Berger
Plant embryogenesis initiates with the fusion of sperm and egg cell, and completes the generation of the basic outline of the future plant. Here, we summarize the recent findings about the signaling cascade triggering the zygotic transcription, and the intracellular events and regulatory factors involved in the formation of the two major body axes. We highlight the lack of systematic de novo transcriptional activation in the zygote, and emphasize the importance of cytoskeletal reorganization to polarize the zygote and control the first asymmetric division that establishes the apical-basal axis...
September 14, 2018: Current Opinion in Plant Biology
James G Umen
The unicellular green alga Chlamydomonas provides a simplified model for defining core cell cycle functions conserved in the green lineage and for understanding multiple fission, a common cell cycle variation found in many algae. Systems-level approaches including a recent groundbreaking screen for conditional lethal cell cycle mutants and genome-wide transcriptome analyses are revealing the complex relationships among cell cycle regulators and helping define roles for CDKA/CDK1 and CDKB, the latter of which is unique to the green lineage and plays a central role in mitotic regulation...
September 10, 2018: Current Opinion in Plant Biology
Annalisa Rizza, Alexander M Jones
The gibberellin phytohormones regulate growth and development throughout the plant lifecycle. Upstream regulation and downstream responses to gibberellins vary across cells and tissues, developmental stages, environmental conditions, and plant species. The spatiotemporal distribution of gibberellins is the result of an ensemble of biosynthetic, catabolic and transport activities, each of which can be targeted to influence gibberellin levels in space and time. Understanding gibberellin distributions has recently benefited from discovery of transport proteins capable of importing gibberellins as well as novel methods for detecting gibberellins with high spatiotemporal resolution...
August 30, 2018: Current Opinion in Plant Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"