Read by QxMD icon Read

IEEE Transactions on Visualization and Computer Graphics

Daniel Meister, Jiri Bittner
We propose a novel massively parallel construction algorithm for Bounding Volume Hierarchies (BVHs) based on locally-ordered agglomerative clustering. Our method builds the BVH iteratively from bottom to top by merging a batch of cluster pairs in each iteration. To efficiently find the neighboring clusters, we keep the clusters ordered along the Morton curve. This ordering allows us to identify approximate nearest neighbors very efficiently and in parallel. We implemented our algorithm in CUDA and evaluated it in the context of GPU ray tracing...
February 15, 2017: IEEE Transactions on Visualization and Computer Graphics
Chenhui Li, George Baciu, Han Yu
Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heatmap. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions...
February 13, 2017: IEEE Transactions on Visualization and Computer Graphics
Isaac Cho, Jialei Li, Zachary Wartell
Multi-scale virtual environments contain geometric details ranging over several orders of magnitude and typically employ out-of-core rendering techniques. When displayed in virtual reality systems this entails using a 7 degree-of-freedom (DOF) view model where view scale is a separate 7th DOF in addition to 6DOF view pose. Dynamic adjustment of this and other view parameters become very important to usability. In this paper, we evaluate how two adjustment techniques interact with uni- and bi-manual 7 degree-of-freedom navigation in DesktopVR and a CAVE...
February 13, 2017: IEEE Transactions on Visualization and Computer Graphics
Carl Schissler, Christian Loftin, Dinesh Manocha
We present a novel algorithm to generate virtual acoustic effects in captured 3D models of real-world scenes for multimodal augmented reality. We leverage recent advances in 3D scene reconstruction in order to automatically compute acoustic material properties. Our technique consists of a two-step procedure that first applies a convolutional neural network (CNN) to estimate the acoustic material properties, including frequency-dependent absorption coefficients, that are used for interactive sound propagation...
February 9, 2017: IEEE Transactions on Visualization and Computer Graphics
Seokyeon Kim, Seongmin Jeong, Insoo Woo, Yun Jang, Ross Maciejewski, David Ebert
Geographic visualization research has focused on a variety of techniques to represent and explore spatiotemporal data. The goal of those techniques is to enable users to explore events and interactions over space and time in order to facilitate the discovery of patterns, anomalies and relationships within the data. However, it is difficult to extract and visualize data flow patterns over time for non-directional statistical data without trajectory information. In this work, we develop a novel flow analysis technique to extract, represent, and analyze flow maps of non-directional spatiotemporal data unaccompanied by trajectory information...
February 8, 2017: IEEE Transactions on Visualization and Computer Graphics
Xiangyun Liao, Weixin Si, Zhiyong Yuan, Hanqiu Sun, Jing Qin, Qiong Wang, Pheng-Ann Heng
Turbulent vortices in smoke flows are crucial for a visually interesting appearance. Unfortunately, it is challenging to efficiently simulate these appealing effects in the framework of vortex filament methods. The vortex filaments in grids scheme allows to efficiently generate turbulent smoke with macroscopic vortical structures, but suffers from the projection-related dissipation, and thus the small-scale vortical structures under grid resolution are hard to capture. In addition, this scheme cannot be applied in wall-bounded turbulent smoke simulation, which requires efficiently handling smoke-obstacle interaction and creating vorticity at the obstacle boundary...
February 7, 2017: IEEE Transactions on Visualization and Computer Graphics
Radu Jianu, Sayeed Safayet Alam
Eye-tracking data is traditionally analyzed by looking at where on a visual stimulus subjects fixate, or, to facilitate more advanced analyses, by using area-of-interests (AOI) defined onto visual stimuli. Recently, there is increasing interest in methods that capture what users are looking at rather than where they are looking. By instrumenting visualization code that transforms a data model into visual content, gaze coordinates reported by an eye-tracker can be mapped directly to granular data shown on the screen, producing temporal sequences of data objects that subjects viewed in an experiment...
February 7, 2017: IEEE Transactions on Visualization and Computer Graphics
Jonathan Harper, Maneesh Agrawala
We present a technique for converting a basic D3 chart into a reusable style template. Then, given a new data source we can apply the style template to generate a chart that depicts the new data, but in the style of the template. To construct the style template we first deconstruct the input D3 chart to recover its underlying structure: the data, the marks and the mappings that describe how the marks encode the data. We then rank the perceptual effectiveness of the deconstructed mappings. To apply the resulting style template to a new data source we first obtain importance ranks for each new data field...
February 7, 2017: IEEE Transactions on Visualization and Computer Graphics
Minmin Lin, Tianjia Shao, Youyi Zheng, Niloy Mitra, Kun Zhou
This paper presents a method to reconstruct a functional mechanical assembly from raw scans. Given multiple input scans of a mechanical assembly, our method first extracts the functional mechanical parts using a motion-guided, patch-based hierarchical registration and labeling algorithm. The extracted functional parts are then parameterized from the segments and their internal mechanical relations are encoded by a graph. We use a joint optimization to solve for the best geometry, placement, and orientation of each part, to obtain a final workable mechanical assembly...
February 1, 2017: IEEE Transactions on Visualization and Computer Graphics
Hoa Nguyen, Paul Rosen
Parallel coordinates plots (PCPs) are a well-studied technique for exploring multi-attribute datasets. In many situations, users find them a flexible method to analyze and interact with data. Unfortunately, using PCPs becomes challenging as the number of data items grows large or multiple trends within the data mix in the visualization. The resulting overdraw can obscure important features. A number of modifications to PCPs have been proposed, including using color, opacity, smooth curves, frequency, density, and animation to mitigate this problem...
January 30, 2017: IEEE Transactions on Visualization and Computer Graphics
Ed Quigley, Yue Yu, Jingwei Huang, Winnie Lin, Ronald Fedkiw
We present a novel method for posing and animating botanical tree models interactively in real time. Unlike other state of the art methods which tend to produce trees that are overly flexible, bending and deforming as if they were underwater plants, our approach allows for arbitrarily high stiffness while still maintaining real-time frame rates without spurious artifacts, even on quite large trees with over ten thousand branches. This is accomplished by using an articulated rigid body model with as-stiff-as-desired rotational springs in conjunction with our newly proposed simulation technique, which is motivated both by position based dynamics and the typical O(N) algorithms for articulated rigid bodies...
January 30, 2017: IEEE Transactions on Visualization and Computer Graphics
Shih-Syun Lin, Charles C Morace, Chao-Hung Lin, Li-Fong Hsu, Tong-Yee Lee
Escher transmutation is a graphic art that smoothly transforms one tile pattern into another tile pattern with dual perception. A classic example is the artwork called Sky and Water, in which a compelling figure-ground arrangement is applied to portray the transmutation of a bird in sky and a fish in water. The shape of a bird is progressively deformed and dissolves into the background while the background gradually reveals the shape of a fish. This paper introduces a system to create a variety of Escher-like transmutations, which includes the algorithms for initializing a tile pattern with dual figure-ground arrangement, for searching for the best matched shape of a user-specified motif from a database, and for transforming the content and shapes of tile patterns using a content-aware warping technique...
January 27, 2017: IEEE Transactions on Visualization and Computer Graphics
Ilias Bergstrom, Sergio Azevedo, Panos Papiotis, Nuno Saldanha, Mel Slater
We describe an experiment that explores the contribution of auditory and other features to the illusion of plausibility in a virtual environment that depicts the performance of a string quartet. 'Plausibility' refers to the component of presence that is the illusion that the perceived events in the virtual environment are really happening. The features studied were: Gaze (the musicians ignored the participant, the musicians sometimes looked towards and followed the participant's movements), Sound Spatialization (Mono, Stereo, Spatial), Auralization (no sound reflections, reflections corresponding to a room larger than the one perceived, reflections that exactly matched the virtual room), and Environment (no sound from outside of the room, birdsong and wind corresponding to the outside scene)...
January 27, 2017: IEEE Transactions on Visualization and Computer Graphics
Adalberto L Simeone, Ifigeneia Mavridou, Wendy Powell
In immersive Virtual Reality systems, users tend to move in a Virtual Environment as they would in an analogous physical environment. In this work, we investigated how user behaviour is affected when the Virtual Environment differs from the physical space. We created two sets of four environments each, plus a virtual replica of the physical environment as a baseline. The first focused on aesthetic discrepancies, such as a water surface in place of solid ground. The second focused on mixing immaterial objects together with those paired to tangible objects...
January 26, 2017: IEEE Transactions on Visualization and Computer Graphics
Max Krichenbauer, Goshiro Yamamoto, Takafumi Taketomi, Christian Sandor, Hirokazu Kato
Virtual Reality (VR) Head-Mounted Displays (HMDs) are on the verge of becoming commodity hardware available to the average user and feasible to use as a tool for 3D work. Some HMDs include front-facing cameras, enabling Augmented Reality (AR) functionality. Apart from avoiding collisions with the environment, interaction with virtual objects may also be affected by seeing the real environment. However, whether these effects are positive or negative has not yet been studied extensively. For most tasks it is unknown whether AR has any advantage over VR...
January 25, 2017: IEEE Transactions on Visualization and Computer Graphics
Long Yang, Qingan Yan, Yanping Fu, Chunxia Xiao
Handheld scanning using commodity depth cameras provides a flexible and low-cost manner to get 3D models. The existing methods scan a target by densely fusing all the captured depth images, yet most frames are redundant. The jittering frames inevitably embedded in handheld scanning process will cause feature blurring on the reconstructed model and even trigger the scan failure (i.e., camera tracking losing). To address these problems, in this paper, we propose a novel sparse-sequence fusion (SSF) algorithm for handheld scanning using commodity depth cameras...
January 25, 2017: IEEE Transactions on Visualization and Computer Graphics
YiJheng Huang, Wen-Chieh Lin, I-Cheng Yeh, Tong-Yee Lee
Stylizing a 3D model with characteristic shapes or appearances is common in product design, particularly in the design of 3D model merchandise, such as souvenirs, toys, furniture, and stylized items. A model stylization approach is proposed in this study. The approach combines base and style models while preserving user-specified shape features of the base model and the attractive features of the style model with limited assistance from a user. The two models are first combined at the topological level. A tree-growing technique is utilized to search for all possible combinations of the two models...
January 25, 2017: IEEE Transactions on Visualization and Computer Graphics
Eike Langbehn, Paul Lubos, Gerd Bruder, Frank Steinicke
Redirected walking (RDW) promises to allow near-natural walking in an infinitely large virtual environment (VE) by subtle manipulations of the virtual camera. Previous experiments analyzed the human sensitivity to RDW manipulations by focusing on the worst-case scenario, in which users walk perfectly straight ahead in the VE, whereas they are redirected on a circular path in the real world. The results showed that a physical radius of at least 22 meters is required for undetectable RDW. However, users do not always walk exactly straight in a VE...
January 25, 2017: IEEE Transactions on Visualization and Computer Graphics
Richard Skarbez, Solene Neyret, Frederick P Brooks, Mel Slater, Mary C Whitton
We report on the design and results of an experiment investigating factors influencing Slater's Plausibility Illusion (Psi) in virtual environments (VEs). Slater proposed Psi and Place Illusion (PI) as orthogonal components of virtual experience which contribute to realistic response in a VE. PI corresponds to the traditional conception of presence as "being there," so there exists a substantial body of previous research relating to PI, but very little relating to Psi. We developed this experiment to investigate the components of plausibility illusion using subjective matching techniques similar to those used in color science...
January 25, 2017: IEEE Transactions on Visualization and Computer Graphics
Andre Schollmeyer, Simon Schneegans, Stephan Beck, Anthony Steed, Bernd Froehlich
Modern virtual reality simulations require a constant high-frame rate from the rendering engine. They may also require very low latency and stereo images. Previous rendering engines for virtual reality applications have exploited spatial and temporal coherence by using image-warping to re-use previous frames or to render a stereo pair at lower cost than running the full render pipeline twice. However these previous approaches have shown artifacts or have not scaled well with image size. We present a new image-warping algorithm that has several novel contributions: an adaptive grid generation algorithm for proxy geometry for image warping; a low-pass hole-filling algorithm to address un-occlusion; and support for transparent surfaces by efficiently ray casting transparent fragments stored in per-pixel linked lists of an A-Buffer...
January 25, 2017: IEEE Transactions on Visualization and Computer Graphics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"