Read by QxMD icon Read

Trends in Plant Science

Yuki Nakamura
Phospholipids are essential components of biological membranes and signal transduction cascades in plants. In recent years, plant phospholipid research was greatly advanced by the characterization of numerous mutants affected in phospholipid biosynthesis and the discovery of a number of functionally important phospholipid-binding proteins. It is now accepted that most phospholipids to some extent have regulatory functions, including those that serve as constituents of biological membranes. Phospholipids are more than an inert end product of lipid biosynthesis...
October 6, 2017: Trends in Plant Science
Ying Pan, Hui Shi
Photomorphogenesis is oppositely regulated by two groups of transcription factors. CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) degrades the positive factors but stabilizes the negative ones to predominantly repress photomorphogenesis. It is known that COP1 degrades substrates as an E3 ligase. Two recent studies unraveled the long-sought mechanisms of how COP1 stabilizes the negative transcription factors.
October 4, 2017: Trends in Plant Science
Marc Libault, Lise Pingault, Prince Zogli, John Schiefelbein
Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena...
September 29, 2017: Trends in Plant Science
Silvia Nitschke, Anne Cortleven, Thomas Schmülling
Recent work has shown that changing the photoperiod induces stress in Arabidopsis thaliana. It has particularly dramatic consequences in cytokinin-deficient plants and clock mutants. Here, we argue that studying the impact of an altered photoperiod will provide novel insights into the circadian clock, factors regulating it, and pathways under its control.
September 29, 2017: Trends in Plant Science
Matthew J Paul, Michael L Nuccio, Shib Sankar Basu
Crop yield improvements need to accelerate to avoid future food insecurity. Outside Europe, genetically modified (GM) crops for herbicide- and insect-resistance have been transformative in agriculture; other traits have also come to market. However, GM of yield potential and stress resilience has yet to impact on food security. Genes have been identified for yield such as grain number, size, leaf growth, resource allocation, and signaling for drought tolerance, but there is only one commercialized drought-tolerant GM variety...
September 29, 2017: Trends in Plant Science
José Crossa, Paulino Pérez-Rodríguez, Jaime Cuevas, Osval Montesinos-López, Diego Jarquín, Gustavo de Los Campos, Juan Burgueño, Juan M Camacho-González, Sergio Pérez-Elizalde, Yoseph Beyene, Susanne Dreisigacker, Ravi Singh, Xuecai Zhang, Manje Gowda, Manish Roorkiwal, Jessica Rutkoski, Rajeev K Varshney
Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains...
September 28, 2017: Trends in Plant Science
Alain Tissier, John A Morgan, Natalia Dudareva
Plant glandular trichomes are able to secrete and store large amounts of volatile organic compounds (VOCs). VOCs typically accumulate in dedicated extracellular spaces, which can be either subcuticular, as in the Lamiaceae or Asteraceae, or intercellular, as in the Solanaceae. Volatiles are retained at high concentrations in these storage cavities with limited release into the atmosphere and without re-entering the secretory cells, where they would be toxic. This implies the existence of mechanisms allowing transport of VOCs to the cavity but preventing their diffusion out once they have been delivered...
September 25, 2017: Trends in Plant Science
Carlos L Ballaré
Localized responses to changes in the red to far-red ratio (R:FR) allow plants to efficiently forage for light in patchy canopies, and to fine-tune physiological activities to the local light environment. Recent studies are elucidating the molecular mechanisms that mediate localized responses to R:FR and the functional implications of these responses.
September 20, 2017: Trends in Plant Science
Marilyne Debieu, Ghislain Kanfany, Laurent Laplaze
Pearl millet is an important cereal for food security in the arid regions of Africa and India. The recently published genome of this tough cereal crop has shed new light on its history and adaptation to dry, hot climates and paves the way for much-needed genomic-based breeding efforts.
September 19, 2017: Trends in Plant Science
Juli G Pausas, Jon E Keeley
Many plants resprout from basal buds after disturbance, and this is common in shrublands subjected to high-intensity fires. However, resprouting after fire from epicormic (stem) buds is globally far less common. Unlike basal resprouting, post-fire epicormic resprouting is a key plant adaptation for retention of the arborescent skeleton after fire, allowing rapid recovery of the forest or woodland and leading to greater ecosystem resilience under recurrent high-intensity fires. Here we review the biogeography of epicormic resprouting, the mechanisms of protection, the fire regimes where it occurs, and the evolutionary drivers that shaped this trait...
September 16, 2017: Trends in Plant Science
Feifei Yu, Qi Xie
The phytohormone abscisic acid (ABA) is a vital endogenous messenger that regulates diverse physiological processes in plants. The regulation of ABA signaling has been well studied at both the transcriptional and translational levels. Post-translational modification of key regulators in ABA signaling by the 26S ubiquitin proteasome pathway is well known. Recently, increasing evidence demonstrates that atypical turnover of key regulators by the endocytic trafficking pathway and autophagy also play vital roles in ABA perception, signaling, and action...
September 14, 2017: Trends in Plant Science
Daniel A Bastias, M Alejandra Martínez-Ghersa, Carlos L Ballaré, Pedro E Gundel
Although the role of fungal alkaloids in protecting grasses associated with Epichloë fungal endophytes has been extensively documented, the effects of the symbiont on the host plant's immune responses have received little attention. We propose that, in addition to producing protective alkaloids, endophytes enhance plant immunity against chewing insects by promoting endogenous defense responses mediated by the jasmonic acid (JA) pathway. We advance a model that integrates this dual effect of endophytes on plant defenses and test its predictions by means of a standard meta-analysis...
September 8, 2017: Trends in Plant Science
Craig Schluttenhofer, Ling Yuan
Hemp has been an important crop throughout human history for food, fiber, and medicine. Despite significant progress made by the international research community, the basic biology of hemp plants remains insufficiently understood. Clear objectives are needed to guide future research. As a semi-domesticated plant, hemp has many desirable traits that require improvement, including eliminating seed shattering, enhancing the quantity and quality of stem fiber, and increasing the accumulation of phytocannabinoids...
September 5, 2017: Trends in Plant Science
Caiji Gao, Xiaohong Zhuang, Jinbo Shen, Liwen Jiang
The endosomal sorting complex required for transport (ESCRT) machinery is an ancient system that deforms membrane and severs membrane necks from the inside. Extensive evidence has accumulated to demonstrate the conserved functions of plant ESCRTs in multivesicular body (MVB) biogenesis and MVB-mediated membrane protein sorting. In addition, recent exciting findings have uncovered unique plant ESCRT components and point to emerging roles for plant ESCRTs in non-endosomal sorting events such as autophagy, cytokinesis, and viral replication...
August 31, 2017: Trends in Plant Science
Emilie Chanclud, Benoît Lacombe
It is well established that plant hormones such as auxins, cytokinins (CKs), and abscisic acid (ABA) not only govern important plant physiological traits but are key players in plant-microbe interactions. A poorly appreciated fact, however, is that both microbes and animals produce and perceive plant hormones and their mimics. Moreover, dietary plant hormones impact on human physiological process such as glucose assimilation, inflammation, and cell division. This leads us to wonder whether plant hormones could ensure functions in microbes per se as well as in animal-microbe interactions...
July 28, 2017: Trends in Plant Science
Kathleen Donohue
An upstream gene in the pathway that induces flowering in response to cold has been identified. The gene, RVR1, occurs in several plant lineages and operates in a pathway that exhibits functional divergence across development and across taxa. Such divergence can provide insight into how genetic pathways evolve.
October 2017: Trends in Plant Science
Fei Zhang, Alan May, Vivian F Irish
The WUSCHEL (WUS) gene is necessary for the maintenance of stem cells in the shoot apical meristem. Four recent reports show that cytokinin responsive type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs) directly activate WUS expression, providing a long-awaited explanation for how cytokinin influences the maintenance of the stem cell niche.
October 2017: Trends in Plant Science
Claudio Stasolla, Robert D Hill
How stem cells retain their undifferentiated state or how differentiated cells are capable of having dissimilar responses to perturbations are major open questions in plant biology. Cell-specific phytoglobin expression may be one mechanism determining cell fate by the modulation of nitric oxide (NO), affecting cellular hormonal responses and processes such as cell differentiation.
October 2017: Trends in Plant Science
Marek Marzec
Strigolactones (SLs) and gibberellins (GAs) are plant hormones that share some unique aspects of their perception and signalling pathways. Recent discoveries indicate that these two phytohormones may act together in processes of plant development and that SL biosynthesis is regulated by GAs.
October 2017: Trends in Plant Science
Karel Van De Velde, Philip Ruelens, Koen Geuten, Antje Rohde, Dominique Van Der Straeten
The spectacular yield increases in rice and wheat during the green revolution were partly realized by reduced gibberellin (GA) synthesis or sensitivity, both causing the accumulation of DELLA proteins. Although insights into the regulation of plant growth and development by DELLA proteins advanced rapidly in arabidopsis (Arabidopsis thaliana), DELLA-mediated regulation of downstream responses in cereals has received little attention to date. Furthermore, translating this research from arabidopsis to cereals is challenging given their different growth patterns and our phylogenetic analysis which reveals that DELLA-related DGLLA proteins exist in cereals but not in arabidopsis...
October 2017: Trends in Plant Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"