journal
MENU ▼
Read by QxMD icon Read
search

Applied Physics Letters

journal
https://www.readbyqxmd.com/read/28190886/the-mechanical-response-in-a-fluid-of-synthetic-antiferromagnetic-and-ferrimagnetic-microdiscs-with-perpendicular-magnetic-anisotropy
#1
T Vemulkar, E N Welbourne, R Mansell, D C M C Petit, R P Cowburn
In this article, we demonstrate the magneto-mechanic behavior in a fluid environment of perpendicularly magnetized microdiscs with antiferromagnetic interlayer coupling. When suspended in a fluid and under the influence of a simple uniaxial applied magnetic field sequence, the microdiscs mechanically rotate to access the magnetic saturation processes that are either that of the easy axis, hard axis, or in-between the two, in order to lower their energy. Further, these transitions enable the magnetic particles to form reconfigurable magnetic chains, and transduce torque from uniaxial applied fields...
January 23, 2017: Applied Physics Letters
https://www.readbyqxmd.com/read/28179732/a-microfabricated-optically-pumped-magnetic-gradiometer
#2
D Sheng, A R Perry, S P Krzyzewski, S Geller, J Kitching, S Knappe
We report on the development of a microfabricated atomic magnetic gradiometer based on optical spectroscopy of alkali atoms in the vapor phase. The gradiometer, which operates in the spin-exchange relaxation free regime, has a length of 60 mm and cross sectional diameter of 12 mm, and consists of two chip-scale atomic magnetometers which are interrogated by a common laser light. The sensor can measure differences in magnetic fields, over a 20 mm baseline, of 10 fT/[Formula: see text] at frequencies above 20 Hz...
January 16, 2017: Applied Physics Letters
https://www.readbyqxmd.com/read/28104923/unique-heating-curves-generated-by-radiofrequency-electric-field-interactions-with-semi-aqueous-solutions
#3
Nadia C Lara, Asad A Haider, Lon J Wilson, Steven A Curley, Stuart J Corr
Aqueous and nanoparticle-based solutions have been reported to heat when exposed to an alternating radiofrequency (RF) electric-field. Although the theoretical models have been developed to accurately model such a behavior given the solution composition as well as the geometrical constraints of the sample holder, these models have not been investigated across a wide-range of solutions where the dielectric properties differ, especially with regard to the real permittivity. In this work, we investigate the RF heating properties of non-aqueous solutions composed of ethanol, propylene glycol, and glycine betaine with and without varying amounts of NaCl and LiCl...
January 2, 2017: Applied Physics Letters
https://www.readbyqxmd.com/read/28104922/volumetric-doppler-angle-correction-for-ultrahigh-resolution-optical-coherence-doppler-tomography
#4
Jiang You, Ang Li, Congwu Du, Yingtian Pan
Ultrahigh-resolution optical coherence Doppler tomography (μODT) demonstrates great potential for quantitative blood flow imaging owing to its large field of view and capillary resolution. However, μODT only detects the axial flow velocity and requires Doppler angle correction to retrieve the absolute velocity. Although methods for Doppler angle tracking of single or few large vessels have been reported, a method that enables angle correction of the entire 3D microvascular networks remains a challenge. Here, we present a method based on eigenvalue analysis of 3D Hessian matrix to retrieve the orientation of each tubular vessel...
January 2, 2017: Applied Physics Letters
https://www.readbyqxmd.com/read/28104921/effects-of-gold-nanoparticles-on-lipid-packing-and-membrane-pore-formation
#5
Anupama Bhat, Lance W Edwards, Xiao Fu, Dillon L Badman, Samuel Huo, Albert J Jin, Qi Lu
Gold nanoparticles (AuNPs) have been increasingly integrated in biological systems, making it imperative to understand their interactions with cell membranes, the first barriers to be crossed to enter cells. Herein, liposomes composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) as a model membrane system were treated with citrate stabilized AuNPs from 5 to 30 nm at various concentrations. The fluorescence shifts of Laurdan probes reveal that AuNPs in general made liposomes more fluidic. The increased fluidity is expected to result in an increased surface area, and thus liposome shape changes from circular to less circular, which was further confirmed with fluorescence microscopy...
December 26, 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/28090117/generation-of-shear-waves-by-laser-in-soft-media-in-the-ablative-and-thermoelastic-regimes
#6
Pol Grasland-Mongrain, Yuankang Lu, Frederic Lesage, Stefan Catheline, Guy Cloutier
This article describes the generation of elastic shear waves in a soft medium using a laser beam. Our experiments show two different regimes depending on laser energy. Physical modeling of the underlying phenomena reveals a thermoelastic regime caused by a local dilatation resulting from temperature increase, and an ablative regime caused by a partial vaporization of the medium by the laser. Computed theoretical displacements are close to experimental measurements. A numerical study based on the physical modeling gives propagation patterns comparable to those generated experimentally...
November 28, 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/27965517/laser-enhanced-high-intensity-focused-ultrasound-heating-in-an-in-vivo-small-animal-model
#7
Janggun Jo, Xinmai Yang
The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm(2) laser exposures at 532 nm wavelength...
November 21, 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/27916999/high-power-telecommunication-compatible-photoconductive-terahertz-emitters-based-on-plasmonic-nano-antenna-arrays
#8
Nezih Tolga Yardimci, Hong Lu, Mona Jarrahi
We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths...
November 7, 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/28065982/circular-photogalvanic-effect-in-organometal-halide-perovskite-ch3nh3pbi3
#9
Junwen Li, Paul M Haney
We study the circular photogalvanic effect in the organometal halide perovskite solar cell absorber CH3NH3PbI3. The calculated photocurrent density for a system with broken inversion symmetry is about 10(-9) A/W, comparable to the previously studied quantum well and bulk Rashba systems. The circular photogalvanic effect relies on inversion symmetry breaking, so that by tuning the optical penetration depth, the degree of inversion symmetry breaking can be probed at different depths from the sample surface. We propose that measurements of this effect may clarify the presence or absence of inversion symmetry, which remains a controversial issue and has been argued to play an important role in the high conversion efficiency of this material...
November 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/27833173/contactless-microparticle-control-via-ultrahigh-frequency-needle-type-single-beam-acoustic-tweezers
#10
Chunlong Fei, Ying Li, Benpeng Zhu, Chi Tat Chiu, Zeyu Chen, Di Li, Yintang Yang, K Kirk Shung, Qifa Zhou
This paper reports on contactless microparticle manipulation including single-particle controlled trapping, transportation, and patterning via single beam acoustic radiation forces. As the core component of single beam acoustic tweezers, a needle type ultrasonic transducer was designed and fabricated with center frequency higher than 300 MHz and -6 dB fractional bandwidth as large as 64%. The transducer was built for an f-number close to 1.0, and the desired focal depth was achieved by press-focusing technology...
October 24, 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/27821874/continuous-flow-multi-pulse-electroporation-at-low-dc-voltages-by-microfluidic-flipping-of-the-voltage-space-topology
#11
N Bhattacharjee, L F Horowitz, A Folch
Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions...
October 17, 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/27795571/structural-analysis-of-the-epitaxial-interface-ag-zno-in-hierarchical-nanoantennas
#12
John Eder Sanchez, Ulises Santiago, Alfredo Benitez, Miguel José Yacamán, Francisco Javier González, Arturo Ponce
Detectors, photo-emitter, and other high order radiation devices work under the principle of directionality to enhance the power of emission/transmission in a particular direction. In order to understand such directionality, it is important to study their coupling mechanism of their active elements. In this work, we present a crystalline orientation analysis of ZnO nanorods grown epitaxially on the pentagonal faces of silver nanowires. The analysis of the crystalline orientation at the metal-semiconductor interface (ZnO/Ag) is performed with precession electron diffraction under assisted scanning mode...
October 10, 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/27795570/flexible-bottom-gate-graphene-transistors-on-parylene-c-substrate-and-the-effect-of-current-annealing
#13
Dong-Wook Park, Hyungsoo Kim, Jihye Bong, Solomon Mikael, Tong June Kim, Justin C Williams, Zhenqiang Ma
Flexible graphene transistors built on a biocompatible Parylene C substrate would enable active circuitry to be integrated into flexible implantable biomedical devices. An annealing method to improve the performance of a flexible transistor without damaging the flexible substrate is also desirable. Here, we present a fabrication method of a flexible graphene transistor with a bottom-gate coplanar structure on a Parylene C substrate. Also, a current annealing method and its effect on the device performance have been studied...
October 10, 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/28065981/magnetic-microscopy-and-simulation-of-strain-mediated-control-of-magnetization-in-ni-pmn-pt-nanostructures
#14
Ian Gilbert, Andres C Chavez, Daniel T Pierce, John Unguris, Wei-Yang Sun, Cheng-Yen Liang, Gregory P Carman
Strain-mediated thin film multiferroics comprising piezoelectric/ferromagnetic heterostructures enable the electrical manipulation of magnetization with much greater efficiency than other methods; however, the investigation of nanostructures fabricated from these materials is limited. Here we characterize ferromagnetic Ni nanostructures grown on a ferroelectric PMN-PT substrate using scanning electron microscopy with polarization analysis (SEMPA) and micromagnetic simulations. The magnetization of the Ni nanostructures can be controlled with a combination of sample geometry and applied electric field, which strains the ferroelectric substrate and changes the magnetization via magnetoelastic coupling...
October 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/27647942/persistent-current-switch-for-pancake-coils-of-rare-earth-barium-copper-oxide-high-temperature-superconductor-design-and-test-results-of-a-double-pancake-coil-operated-in-liquid-nitrogen-77-65-k-and-in-solid-nitrogen-60-57-k
#15
Timing Qu, Philip C Michael, John Voccio, Juan Bascuñán, Seungyong Hahn, Yukikazu Iwasa
We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ∼10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77-65 K) and in solid nitrogen (60-57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil field decayed with a time constant of 100 h, which would have been nearly infinite, i...
August 22, 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/27647941/porous-photonic-crystal-external-cavity-laser-biosensor
#16
Qinglan Huang, Jessie Peh, Paul J Hergenrother, Brian T Cunningham
We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO2 dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser...
August 15, 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/27746482/unidirectional-signal-propagation-in-primary-neurons-micropatterned-at-a-single-cell-resolution
#17
H Yamamoto, R Matsumura, H Takaoki, S Katsurabayashi, A Hirano-Iwata, M Niwano
The structure and connectivity of cultured neuronal networks can be controlled by using micropatterned surfaces. Here, we demonstrate that the direction of signal propagation can be precisely controlled at a single-cell resolution by growing primary neurons on micropatterns. To achieve this, we first examined the process by which axons develop and how synapses form in micropatterned primary neurons using immunocytochemistry. By aligning asymmetric micropatterns with a marginal gap, it was possible to pattern primary neurons with a directed polarization axis at the single-cell level...
July 25, 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/27746481/detection-of-atomic-force-microscopy-cantilever-displacement-with-a-transmitted-electron-beam
#18
R Wagner, T J Woehl, R R Keller, J P Killgore
The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected...
July 25, 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/27493276/air-coupled-acoustic-radiation-force-for-non-contact-generation-of-broadband-mechanical-waves-in-soft-media
#19
Łukasz Ambroziński, Ivan Pelivanov, Shaozhen Song, Soon Joon Yoon, David Li, Liang Gao, Tueng T Shen, Ruikang K Wang, Matthew O'Donnell
A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1...
July 25, 2016: Applied Physics Letters
https://www.readbyqxmd.com/read/27551158/interfacial-magnetic-anisotropy-from-a-3-dimensional-rashba-substrate
#20
Junwen Li, Paul M Haney
We study the magnetic anisotropy which arises at the interface between a thin film ferromagnet and a 3-d Rashba material. We use a tight-binding model to describe the bilayer, and the 3-d Rashba material characterized by the spin-orbit strength α and the direction of broken bulk inversion symmetry n̂. We find an in-plane uniaxial anisotropy in the ẑ × n̂ direction, where ẑ is the interface normal. For realistic values of α, the uniaxial anisotropy is of a similar order of magnitude as the bulk magnetocrystalline anisotropy...
July 18, 2016: Applied Physics Letters
journal
journal
33808
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"