Read by QxMD icon Read

IEEE Transactions on Nuclear Science

A Michael Morey, Frédéric Noo, Dan J Kadrmas
Positron emission tomography (PET) images are typically reconstructed with an in-plane pixel size of approximately 4mm for cancer imaging. The objective of this work was to evaluate the effect of using smaller pixels on general oncologic lesion-detection. A series of observer studies was performed using experimental phantom data from the Utah PET Lesion Detection Database, which modeled whole-body FDG PET cancer imaging of a 92kg patient. The data comprised 24 scans over 4 days on a Biograph mCT time-of-flight (TOF) PET/CT scanner, with up to 23 lesions (diam...
June 2016: IEEE Transactions on Nuclear Science
Faisal T Abu-Nimeh, Jennifer Ito, William W Moses, Qiyu Peng, Woon-Seng Choong
OpenPET is an open source, modular, extendible, and high-performance platform suitable for multi-channel data acquisition and analysis. Due to the flexibility of the hardware, firmware, and software architectures, the platform is capable of interfacing with a wide variety of detector modules not only in medical imaging but also in homeland security applications. Analog signals from radiation detectors share similar characteristics - a pulse whose area is proportional to the deposited energy and whose leading edge is used to extract a timing signal...
April 2016: IEEE Transactions on Nuclear Science
Y Chen, Y Cui, P O'Connor, Y Seo, G S Camarda, A Hossain, U Roy, G Yang, R B James
Baseline holder (BLH) circuits are used widely to stabilize the analog output of application-specific integrated circuits (ASICs) for high-count-rate applications. The careful design of BLH circuits is vital to the overall stability of the analog-signal-processing chain in ASICs. Recently, we observed self-triggered fluctuations in an ASIC in which the shaping circuits have a BLH circuit in the feedback loop. In fact, further investigations showed that methods of enhancing small-signal stabilities cause an even worse situation...
February 2016: IEEE Transactions on Nuclear Science
Mark S Smyczynski, Howard C Gifford, Joyoni Dey, Andre Lehovich, Joseph E McNamara, W Paul Segars, Michael A King
The objective of this investigation was to determine the effectiveness of three motion reducing strategies in diminishing the degrading impact of respiratory motion on the detection of small solitary pulmonary nodules (SPN) in single photon emission computed tomographic (SPECT) imaging in comparison to a standard clinical acquisition and the ideal case of imaging in the absence of respiratory motion. To do this non-uniform rational B-spline cardiac-torso (NCAT) phantoms based on human-volunteer CT studies were generated spanning the respiratory cycle for a normal background distribution of Tc-99m NeoTect...
February 2016: IEEE Transactions on Nuclear Science
Mark S Smyczynski, Howard C Gifford, Andre Lehovich, Joseph E McNamara, W Paul Segars, Eric A Hoffman, Benjamin M W Tsui, Michael A King
The objectives of this investigation were to model the respiratory motion of solitary pulmonary nodules (SPN) and then use this model to determine the impact of respiratory motion on the localization and detection of small SPN in SPECT imaging for four reconstruction strategies. The respiratory motion of SPN was based on that of normal anatomic structures in the lungs determined from breath-held CT images of a volunteer acquired at two different stages of respiration. End-expiration (EE) and time-averaged (Frame Av) non-uniform-B-spline cardiac torso (NCAT) digital-anthropomorphic phantoms were created using this information for respiratory motion within the lungs...
February 2016: IEEE Transactions on Nuclear Science
Michael A King, Joyeeta M Mukherjee, Arda Könik, I George Zubal, Joyoni Dey, Robert Licho
For the 2011 FDA approved Parkinson's Disease (PD) SPECT imaging agent I-123 labeled DaTscan, the volume of interest (VOI) is the interior portion of the brain. However imaging of the occipital lobe is also required with PD for calculation of the striatal binding ratio (SBR), a parameter of significance in early diagnosis, differentiation of PD from other disorders with similar clinical presentations, and monitoring progression. Thus we propose the usage of a combination of a multi-pinhole (MPH) collimator on one head of the SPECT system and a fan-beam on the other...
February 2016: IEEE Transactions on Nuclear Science
Junwei Du, Yongfeng Yang, Xiaowei Bai, Martin S Judenhofer, Eric Berg, Kun Di, Steve Buckley, Carl Jackson, Simon R Cherry
The performance of an 8 × 8 array of 6.0 × 6.0 mm(2) (active area) SiPMs was evaluated for PET applications using crystal arrays with different pitch sizes (3.4 mm, 1.5 mm, 1.35 mm and 1.2 mm) and custom designed five-channel front-end readout electronics (four channels for position information and one channel for timing information). The total area of this SiPM array is 57.4 × 57.4 mm(2), and the pitch size is 7.2 mm. It was fabricated using enhanced blue sensitivity SiPMs (MicroFB-60035-SMT) with peak spectral sensitivity at 420 nm...
February 2016: IEEE Transactions on Nuclear Science
Robert P Johnson, Vladimir Bashkirov, Langley DeWitt, Valentina Giacometti, Robert F Hurley, Pierluigi Piersimoni, Tia E Plautz, Hartmut F-W Sadrozinski, Keith Schubert, Reinhard Schulte, Blake Schultze, Andriy Zatserklyaniy
We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object...
February 2016: IEEE Transactions on Nuclear Science
Gengsheng L Zeng, Zeljko Divkovic
Recently we developed a Bayesian-FBP (Filtered Backprojection) algorithm for CT image reconstruction. This algorithm is also referred to as the FBP-MAP (FBP Maximum a Posteriori) algorithm. This non-iterative Bayesian algorithm has been applied to real-time MRI, in which the k-space is under-sampled. This current paper investigates the possibility to extend this Bayesian-FBP algorithm by introducing more controlling parameters. Thus, our original Bayesian-FBP algorithm became a special case of the extended Bayesian-FBP algorithm...
February 2016: IEEE Transactions on Nuclear Science
Raymond R Raylman, Alexander V Stolin, Peter F Martone, Mark F Smith
Mice are the perhaps the most common species of rodents used in biomedical research, but many of the current generation of small animal PET scanners are non-optimal for imaging these small rodents due to their relatively low resolution. Consequently, a number of researchers have investigated the development of high-resolution scanners to address this need. In this investigation, the design of a novel, high-resolution system based on the dual-detector, virtual-pinhole PET concept was explored via Monte Carlo simulations...
February 2016: IEEE Transactions on Nuclear Science
Lindsay C Johnson, Oleg Ovchinnikov, Sepideh Shokouhi, Todd E Peterson
Advances in fabrication techniques, electronics, and mechanical cooling systems have given rise to germanium detectors suitable for biomedical imaging. We are developing a small-animal SPECT system that uses a double-sided Ge strip detector. The detector's excellent energy resolution may help to reduce scatter and simplify processing of multi-isotope imaging, while its ability to measure depth of interaction has the potential to mitigate parallax error in pinhole imaging. The detector's energy resolution is <1% FWHM at 140 keV and its spatial resolution is approximately 1...
October 2015: IEEE Transactions on Nuclear Science
Jose-Gabriel Macias-Montero, Maher Sarraj, Mokhtar Chmeissani, Ricardo Martínez, Carles Puigdengoles
We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to digital converter (ADC), configuration registers, and a 4-state digital controller...
October 1, 2015: IEEE Transactions on Nuclear Science
A Groll, J George, P Vargas, P J La Rivière, L J Meng
X-ray fluorescence computed tomography (XFCT) is an emerging imaging modality that maps the three-dimensional distribution of elements, generally metals, in ex vivo specimens and potentially in living animals and humans. Building on our previous synchrotron-based work, we experimentally explored the use of a benchtop X-ray fluorescence computed tomography system for mapping trace-metal ions in biological samples. This system utilizes a scanning pencil-beam to stimulate the object and then relies on a detection system, with single or multiple slit apertures placed in front of position-sensitive X-ray detectors, to collect the fluorescence X-rays and to form 3-D elemental map without the need for tomographic imaging reconstruction...
October 2015: IEEE Transactions on Nuclear Science
Dong Zeng, Jing Huang, Zhaoying Bian, Shanzhou Niu, Hua Zhang, Qianjin Feng, Zhengrong Liang, Jianhua Ma
Low-dose X-ray computed tomography (CT) simulation from high-dose scan is required in optimizing radiation dose to patients. In this study, we propose a simple low-dose CT simulation strategy in sinogram domain using the raw data from high-dose scan. Specially, a relationship between the incident fluxes of low- and high- dose scans is first determined according to the repeated projection measurements and analysis. Second, the incident flux level of the simulated low-dose scan is generated by properly scaling the incident flux level of high-dose scan via the determined relationship in the first step...
October 2015: IEEE Transactions on Nuclear Science
Joyoni Dey, W Paul Segars, P Hendrik Pretorius, Michael A King
PURPOSE: We investigate the differences without/with respiratory motion correction in apparent imaging agent localization induced in reconstructed emission images when the attenuation maps used for attenuation correction (from CT) are misaligned with the patient anatomy during emission imaging due to differences in respiratory state. METHODS: We investigated use of attenuation maps acquired at different states of a 2 cm amplitude respiratory cycle (at end-expiration, at end-inspiration, the center map, the average transmission map, and a large breath-hold beyond range of respiration during emission imaging) to correct for attenuation in MLEM reconstruction for several anatomical variants of the NCAT phantom which included both with and without non-rigid motion between heart and sub-diaphragmatic regions (such as liver, kidneys etc)...
August 2015: IEEE Transactions on Nuclear Science
Hongdi Li, Chao Wang, Shaohui An, Xingyu Lu, Yun Dong, Shitao Liu, Hossain Baghaei, Yuxuan Zhang, Rocio Ramirez, Wai-Hoi Wong
Accurate PET system timing alignment minimizes the coincidence time window and therefore reduces random events and improves image quality. It is also critical for time-of-flight (TOF) image reconstruction. Here, we use a thin annular cylinder (shell) phantom filled with a radioactive source and located axially and centrally in a PET camera for the timing alignment of a TOF PET system. This timing alignment method involves measuring the time differences between the selected coincidence detector pairs, calibrating the differential and integral nonlinearity of the time-to-digital converter (TDC) with the same raw data and deriving the intrinsic time biases for each detector using an iterative algorithm...
June 2015: IEEE Transactions on Nuclear Science
Raymond R Raylman, Keith Vaigneur, Alexander V Stolin, Gangadhar Jaliparthi
Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector's active area, which could hinder sampling of breast areas close to the chest wall...
June 2015: IEEE Transactions on Nuclear Science
Z Gu, D L Prout, R W Silverman, H Herman, A Dooraghi, A F Chatziioannou
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm(3) LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm(3) BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm(2)) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm(2)), allowing the creation of flat panel detectors without gaps between the detector modules...
June 2015: IEEE Transactions on Nuclear Science
Eleanor Evans, Guido Buonincontri, David Izquierdo, Carmen Methner, Rob C Hawkes, Richard E Ansorge, Thomas Krieg, T Adrian Carpenter, Stephen J Sawiak
Accurate kinetic modelling using dynamic PET requires knowledge of the tracer concentration in plasma, known as the arterial input function (AIF). AIFs are usually determined by invasive blood sampling, but this is prohibitive in murine studies due to low total blood volumes. As a result of the low spatial resolution of PET, image-derived input functions (IDIFs) must be extracted from left ventricular blood pool (LVBP) ROIs of the mouse heart. This is challenging because of partial volume and spillover effects between the LVBP and myocardium, contaminating IDIFs with tissue signal...
June 1, 2015: IEEE Transactions on Nuclear Science
William C J Hunter, Robert S Miyaoka, Lawrence MacDonald, Wendy McDougald, Thomas K Lewellen
We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of a crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for each crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1...
February 6, 2015: IEEE Transactions on Nuclear Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"