Read by QxMD icon Read

Current Opinion in Microbiology

Yan Wang, Yuanchao Wang
Phytophthora sojae is one of the most damaging plant pathogens of soybean. To aid establishment of a compatible interaction with its host, P. sojae deploys many secreted effectors. These effectors act either in the apoplastic space to cope with hostile conditions or inside of host cells to reprogram host physiology favoring pathogen growth. Effectors have been used as molecular probes, which revealed in Phytophthora that effectors execute their virulence function via manipulating host targets. In addition, recent studies have discovered 'pseudo-effectors' in Phytophthora that act as decoys to shield virulence effectors from host defense, a new paradigm in plant-pathogen interactions...
February 14, 2018: Current Opinion in Microbiology
Cécile Lorrain, Benjamin Petre, Sébastien Duplessis
For years, the study of rust fungal effectors has been impeded by the lack of molecular genetic tools in rust pathosystems. The recent use of heterologous plants to perform effector screens (effectoromics)-including effector localisation (cellular targets) and protein interactors (molecular targets) in plant cells-has changed the game. These screens revealed that many candidate effectors from various rust fungi target specific plant cell compartments, including chloroplasts, and associate with specific plant protein complexes...
February 14, 2018: Current Opinion in Microbiology
Jerome Wong-Ng, Antonio Celani, Massimo Vergassola
Bacterial chemotaxis is a classical subject: our knowledge of its molecular pathway has grown very detailed, and experimental observations, as well as mathematical models of the dynamics of chemotactic populations, have a history of several decades. This should not lead to the conclusion that only minor details are left to be understood. Indeed, it is believed that bacterial chemotaxis is under selection for efficiency, yet the underlying functional forces remain largely unknown. These aspects are discussed here by the presentation of illustrative examples related to the role of adaptation and signal integration...
February 13, 2018: Current Opinion in Microbiology
Megan C McDonald, Peter S Solomon
For many years pathogens of wheat have remained poorly understood. Hindered by an inaccessible host and the obligate nature of many of the pathogens, our understanding of these interactions has been limited compared to other more amenable pathosystems. However, breakthroughs over recent years have shed new light on diseases of wheat, particularly those caused by the genetically tractable necrotrophic pathogens. We now understand that many of the necrotrophic fungal pathogens do interact with wheat in a strict gene-for-gene relationship, and that pathogen and host partners in these interactions have now been identified...
February 13, 2018: Current Opinion in Microbiology
Qing Shen, Yingyao Liu, Naweed I Naqvi
Phytohormone networks are crucial for maintaining the delicate balance between growth and biotic stress responses in plants. Jasmonic acid, salicylic acid, ethylene, and the associated signaling crosstalk are important for pathogen defense; whereas gibberellin and cytokinin function in growth and development in plants. Plant pathogenic fungi have evolved remarkable strategies to manipulate and/or hijack such phytohormone signaling cascades for their own benefit, thus leading to susceptibility and disease in host plants...
February 13, 2018: Current Opinion in Microbiology
Daniella Schatz, Assaf Vardi
Communication between microorganisms in aquatic environments can influence ecosystem function and determine the structure and composition of microbial populations. This microbial cross talk can be mediated by excretion of specialized metabolites or extracellular vesicles (EVs). Recently it has become apparent that cells across all domains of life produce EVs that may convey specific targeted signals that can modulate cell fate, morphology and susceptibility to viruses. The vast majority of knowledge about EVs is derived from studies of mammalian tissues, parasitic host-pathogen interactions and model bacterial systems...
February 12, 2018: Current Opinion in Microbiology
Jan-Willem Veening, Rita Tamayo
No abstract text is available yet for this article.
February 11, 2018: Current Opinion in Microbiology
Raquel Quatrini, D Barrie Johnson
Extremely acidic environments have global distribution and can have natural or, increasingly, anthropogenic origins. Extreme acidophiles grow optimally at pH 3 or less, have multiple strategies for tolerating stresses that accompany high levels of acidity and are scattered in all three domains of the tree of life. Metagenomic studies have expanded knowledge of the diversity of extreme acidophile communities, their ecological networks and their metabolic potentials, both confirmed and inferred. High resolution compositional and functional profiling of these microbiomes have begun to reveal spatial diversity patterns at global, regional, local, zonal and micro-scales...
February 6, 2018: Current Opinion in Microbiology
Katherine Lagree, Jigar V Desai, Jonathan S Finkel, Frederick Lanni
Fungal biofilms are heterogeneous, surface-associated colonies comprised of filamentous hyphae (chains of elongated cells), pseudohyphal cells, yeast-form cells, and various forms of extracellular matrix. When grown on a substratum under liquid culture medium, the microbial fungus Candida albicans forms dense biofilms that range in thickness from 100 to 600μm. Apical hyphae in the medium and invasive hyphae in the substratum may add greatly to the thickness and complexity of the biofilm. Because of the heterogeneity of the structure, and the large refractive index differences between cell walls, cytoplasm, and medium, fungal biofilms appear optically opaque...
January 31, 2018: Current Opinion in Microbiology
Stuart C Howes, Roman I Koning, Abraham J Koster
Understanding how microbes utilize their environment is aided by visualizing them in their natural context at high resolution. Correlative imaging enables efficient targeting and identification of labelled viral and bacterial components by light microscopy combined with high resolution imaging by electron microscopy. Advances in genetic and bioorthogonal labelling, improved workflows for targeting and image correlation, and large-scale data collection are increasing the applicability of correlative imaging methods...
January 29, 2018: Current Opinion in Microbiology
Jacek Wierzchos, M Cristina Casero, Octavio Artieda, Carmen Ascaso
The extremely harsh conditions of hyperarid deserts are a true challenge for microbial life. Microorganisms thriving in such polyextreme environments are fascinating as they can tell us more about life, its strategies and its boundaries than other groups of organisms. The Atacama Desert (North Chile) holds two world records of extreme environmental characteristics: the lowest rainfall and greatest surface ultraviolet radiation and total solar irradiance ever measured on Earth. Despite these limiting conditions for life, we recently identified several remarkable examples of endolithic habitats colonized by phototrophic and heterotrophic microorganisms in the hyperarid core of the Atacama Desert...
January 22, 2018: Current Opinion in Microbiology
Laurence Yang, James T Yurkovich, Zachary A King, Bernhard O Palsson
As microbes face changing environments, they dynamically allocate macromolecular resources to produce a particular phenotypic state. Broad 'omics' data sets have revealed several interesting phenomena regarding how the proteome is allocated under differing conditions, but the functional consequences of these states and how they are achieved remain open questions. Various types of multi-scale mathematical models have been used to elucidate the genetic basis for systems-level adaptations. In this review, we outline several different strategies by which microbes accomplish resource allocation and detail how mathematical models have aided in our understanding of these processes...
January 20, 2018: Current Opinion in Microbiology
Marc Strous, Christine Sharp
Biotechnology conventionally uses pure strains of microorganisms to realize a desired conversion. The design of functional microbiomes is becoming a powerful alternative for when an aseptic environment is not an option, either for economic reasons or if the environment is intrinsically open. Rapid technological developments in combined -omics approaches is enabling the engineering and optimization of highly complex microbiomes. This review outlines emerging principles of design and provides examples of successful approaches and interventions in wastewater treatment, bioenergy production and the human intestinal microbiome...
January 20, 2018: Current Opinion in Microbiology
Jennifer C Ewald
All cells, especially single cell organisms, need to adapt their metabolism, growth and division coordinately to the available nutrients. This coordination is mediated by extensive cross-talk between nutrient signaling, metabolism, growth, and the cell division cycle, which is only gradually being uncovered: Nutrient signaling not only controls entry into the cell cycle at the G1/S transition, but all phases of the cell cycle. Metabolites are even sensed directly by cell cycle regulators to prevent cell cycle progression in absence of sufficient metabolic fluxes...
January 12, 2018: Current Opinion in Microbiology
Arielle Woznica, Nicole King
Molecular cues from environmental bacteria influence important developmental decisions in diverse marine eukaryotes. Yet, relatively little is understood about the mechanisms underlying these interactions, in part because marine ecosystems are dynamic and complex. With the help of simple model systems, including the choanoflagellate Salpingoeca rosetta, we have begun to uncover the bacterial cues that shape eukaryotic development in the ocean. Here, we review how diverse bacterial cues-from lipids to macromolecules-regulate development in marine eukaryotes...
January 10, 2018: Current Opinion in Microbiology
Stacey L Heaver, Elizabeth L Johnson, Ruth E Ley
Sphingolipids, a lipid class characterized by a long-chain amino alcohol backbone, serve vital structural and signaling roles in eukaryotes. Though eukaryotes produce sphingolipids, this capacity is phylogenetically highly restricted in Bacteria. Intriguingly, bacterial species commonly associated in high abundance with eukaryotic hosts include sphingolipid producers, such as the Bacteroidetes in the mammalian gut. To date, a role for bacterial sphingolipids in immune system maturation has been described, but their fate and impact in host physiology and metabolism remain to be elucidated...
January 9, 2018: Current Opinion in Microbiology
Seamus Holden
Bacterial cell division takes place almost entirely below the diffraction limit of light microscopy, making super-resolution microscopy ideally suited to interrogating this process. I review how super-resolution microscopy has advanced our understanding of bacterial cell division. I discuss the mechanistic implications of these findings, propose physical models for cell division compatible with recent data, and discuss key outstanding questions and future research directions.
January 8, 2018: Current Opinion in Microbiology
Filipa L Sousa, Martina Preiner, William F Martin
Molecular hydrogen is an ancient source of energy and electrons. Anaerobic autotrophs that harness the H2/CO2 redox couple harbour ancient biochemical traits that trace back to the universal common ancestor. Aspects of their physiology, including the abundance of transition metals, radical reaction mechanisms, and their main exergonic bioenergetic reactions, forge links between ancient microbes and geochemical reactions at hydrothermal vents. The midpoint potential of H2 however requires anaerobes that reduce CO2 with H2 to use flavin based electron bifurcation-a mechanism to conserve energy as low potential reduced ferredoxins via soluble proteins-for CO2 fixation...
January 6, 2018: Current Opinion in Microbiology
Germán Bonilla-Rosso, Philipp Engel
Gut microbiota studies on diverse animals facilitate our understanding of the general principles governing microbiota-host interactions. The honey bee adds a relevant study system due to the simplicity and experimental tractability of its gut microbiota, but also because bees are important pollinators that suffer from population declines worldwide. The use of gnotobiotic bees combined with genetic tools, 'omics' analysis, and experimental microbiology has recently provided important insights about the impact of the microbiota on bee health and the general functioning of gut ecosystems...
January 5, 2018: Current Opinion in Microbiology
João M Medeiros, Désirée Böck, Martin Pilhofer
Bacterium-host interactions are important for diverse ecological settings including pathogenicity and symbiosis. Electron cryotomography is a powerful method for studying the macromolecular complexes that mediate such interactions in situ. The main limitation of electron cryotomography is its restriction to relatively thin samples such as individual bacterial cells. Cryo-focused ion beam milling was recently proposed as a solution to the thickness limitation. This approach allows the artifact-free thinning of biological specimens for subsequent imaging in the transmission electron microscope...
December 29, 2017: Current Opinion in Microbiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"