Read by QxMD icon Read

Journal of Biological Inorganic Chemistry: JBIC

Alicia Schirer, Youssef El Khoury, Peter Faller, Petra Hellwig
GHK and DAHK are biological peptides that bind both copper and zinc cations. Here we used infrared and Raman spectroscopies to study the coordination modes of both copper and zinc ions, at pH 6.8 and 8.9, correlating the data with the crystal structures that are only available for the copper-bound form. We found that Cu(II) binds to deprotonated backbone (amidate), the N-terminus and N(π) of the histidine side chain, in both GHK and DAHK, at pH 6.8 and 8.9. The data for the coordination of zinc at pH 6.8 points to two conformers including both nitrogens of a histidine residue...
March 20, 2017: Journal of Biological Inorganic Chemistry: JBIC
Radu Silaghi-Dumitrescu, Béla Mihály, Timea Mihály, Amr A A Attia, Pablo J Sanz Miguel, Bernhard Lippert
A detailed computational (DFT level of theory) study regarding the nature of the exocyclic amino group, N6H2, of the model nucleobase 9-methyladenine (9MeA) and its protonated (9MeAH(+)) and deprotonated forms (9MeA-H), free and metal-complexed, has been conducted. The metals are Pt(II) and Pd(II), bonded to nitrogen-containing co-ligands (NH3, dien, bpy), with N1, N6, and N7 being the metal-binding sites, individually or in different combinations. The results obtained from gas phase calculations are critically compared with X-ray crystallography data, whenever possible...
March 17, 2017: Journal of Biological Inorganic Chemistry: JBIC
Shun Hirota, Nobuhiro Yamashiro, Zhonghua Wang, Satoshi Nagao
Cytochrome c (cyt c) forms oligomers by domain swapping. It exchanges the C-terminal α-helical region between protomers, and the Met80‒heme iron bond is perturbed significantly in domain-swapped oligomers. The peroxidase activity of cyt c increases by Met80 dissociation from the heme iron, which may trigger apoptosis. This study elucidates the effect of the Met80 heme coordination on cyt c domain swapping by obtaining oligomers for both wild-type (WT) and M80A human cyt c by an addition of ethanol to their monomers, followed by lyophilization and dissolution to buffer, and investigating their dimer properties...
February 28, 2017: Journal of Biological Inorganic Chemistry: JBIC
Francesco Balestri, Roberta Moschini, Mario Cappiello, Umberto Mura, Antonella Del-Corso
Bovine lens aldose reductase is susceptible to a copper-mediated oxidation, leading to the generation of a disulfide bridge with the concomitant incorporation of two equivalents of the metal and inactivation of the enzyme. The metal complexed by the protein remains redox active, being able to catalyse the oxidation of different physiological thiol compounds. The thiol oxidase activity displayed by the enzymatic form carrying one equivalent of copper ion (Cu1-AR) has been characterized. The efficacy of Cu1-AR in catalysing thiol oxidation is essentially comparable to the free copper in terms of both thiol concentration and pH effect...
February 21, 2017: Journal of Biological Inorganic Chemistry: JBIC
Si Ying Li, Paul H Oyala, R David Britt, Susan T Weintraub, Laura M Hunsicker-Wang
Rieske proteins play an essential role in electron transfer in the bc 1 complex. Rieske proteins contain a [2Fe-2S] cluster with one iron ligated by two histidines and the other iron ligated by two cysteines. All Rieske proteins have pH-dependent reduction potentials with the histidines ligating the cluster deprotonating in response to increases in pH. The addition of diethylpyrocarbonate (DEPC) modifies deprotonated histidines. The previous studies on the isolated Thermus thermophilus Rieske protein have used large excesses of DEPC, and this study examines what amino acids become modified under different molar equivalents of DEPC to protein...
February 14, 2017: Journal of Biological Inorganic Chemistry: JBIC
Lawrence Que
No abstract text is available yet for this article.
February 11, 2017: Journal of Biological Inorganic Chemistry: JBIC
Jun-Fei Wang, Fang Ma, Hao-Ling Sun, Jing Zhang, Jun-Long Zhang
Linear tetrapyrrole is the core structure of light-sensitive native cofactors such as phycocyanobilin, phytochromobilin and bile pigments, which attracts increasing attention in biomimetic chemistry, photochemistry and coordination chemistry. To decipher the relationship between structures and functions, in this work, we firstly reported the synthesis, isolation and characterization of three bilindione isomers (ZZZ, syn, syn, syn 1, EZE, syn, syn, anti 2 and EZE, anti, syn, anti 3) bearing meso-pentafluorophenyl groups...
February 7, 2017: Journal of Biological Inorganic Chemistry: JBIC
Giorgio Olivo, Olaf Cussó, Margarida Borrell, Miquel Costas
The selective oxidation of hydrocarbons is a challenging reaction for synthetic chemists, but common in nature. Iron oxygenases activate the O-O bond of dioxygen to perform oxidation of alkane and alkenes moieties with outstanding levels of regio-, chemo- and stereoselectivity. Along a bioinspired approach, iron coordination complexes which mimic structural and reactivity aspects of the active sites of nonheme iron oxygenases have been explored as oxidation catalysts. This review describes the evolution of this research field, from the early attempts to reproduce the basic reactivity of nonheme iron oxygenases to the development of effective iron oxidation catalysts...
January 25, 2017: Journal of Biological Inorganic Chemistry: JBIC
Rongfeng Zhu, Ziyang Hao, Hubing Lou, Yanqun Song, Jingyi Zhao, Yuqing Chen, Jiuhe Zhu, Peng R Chen
Multiple antibiotic resistance regulator (MarR) family proteins are widely conserved transcription factors that control bacterial resistance to antibiotics, environmental stresses, as well as the regulation of virulence determinants. Escherichia coli MarR, the prototype member of this family, has recently been shown to undergo copper(II)-catalyzed inter-dimer disulfide bond formation via a unique cysteine residue (Cys80) residing in its DNA-binding domain. However, despite extensive structural characterization of the MarR family proteins, the structural mechanism for DNA binding of this copper(II)-sensing MarR factor remains elusive...
January 25, 2017: Journal of Biological Inorganic Chemistry: JBIC
Dinesh Kumar, Nutan Sharma, Manjula Nair
Urinary tract infections commonly occur in humans due to microbial pathogens invading the urinary tract, which can bring about a range of clinical symptoms and potentially fatal sequelae. The present study is aimed at addressing the development of a new antimicrobial agent against extended spectrum beta lactamase (ESBL) producing E. coli bacteria. We have synthesised some biologically potent (NNNN) donor macrocycles (L 1  = dibenzo[f,n]dipyrido[3,4-b:4',3'-j][1,4,9,12]tetraazacyclohexadecine-6,11,18,23(5H,12H, 7H, 24H)-tetraone, and L 2  = 6,12,19,25-tetraoxo-4,6,11,12,16,18,23,24-octahydrotetrabenzo [b,g,k,p][1,5,10,14]tetra azacyclooctadecine-2,13-dicarboxylic acid) and their Ti and Zr metal complexes in alcoholic media using microwave protocol...
January 18, 2017: Journal of Biological Inorganic Chemistry: JBIC
Kiyoshi Fujisawa
Transition metal-dioxygen complexes have fascinated bioinorganic and inorganic chemists for over half a century. The late Nobumasa Kitajima was one of the very successful researchers in this field. Despite his short career (40 years old), he made many important contributions. This Commentary highlights his important accomplishments and how they have impacted subsequent work in this area.
January 17, 2017: Journal of Biological Inorganic Chemistry: JBIC
Timothy H Yosca, Aaron P Ledray, Joanna Ngo, Michael T Green
Protonated ferryl (or iron(IV)hydroxide) intermediates have been characterized in several thiolate-ligated heme proteins that are known to catalyze C-H bond activation. The basicity of the ferryl intermediates in these species has been proposed to play a critical role in facilitating this chemistry, allowing hydrogen abstraction at reduction potentials below those that would otherwise lead to oxidative degradation of the enzyme. In this contribution, we discuss the events that led to the assignment and characterization of the unusual iron(IV)hydroxide species, highlighting experiments that provided a quantitative measure of the ferryl basicity, the iron(IV)hydroxide pKa...
January 16, 2017: Journal of Biological Inorganic Chemistry: JBIC
Yongho Kim, Binh Khanh Mai, Sumin Park
High-valent Cu and Fe species, which are generated from dioxygen activation in metalloenzymes, carry out the functionalization of strong C-H bonds. Understanding the atomic details of the catalytic mechanism has long been one of the main objectives of bioinorganic chemistry. Large H/D kinetic isotope effects (KIEs) were observed in the C-H activation by high-valent non-heme Cu or Fe complexes in enzymes and their synthetic models. The H/D KIE depends significantly on the transition state properties, such as structure, energies, frequencies, and shape of the potential energy surface, when the tunneling effect is large...
January 16, 2017: Journal of Biological Inorganic Chemistry: JBIC
Chikanobu Sugimoto, Kouta Takeda, Yumi Kariya, Hirotoshi Matsumura, Masafumi Yohda, Hiroyuki Ohno, Nobuhumi Nakamura
NAD(P)-dependent group III alcohol dehydrogenases (ADHs), well known as iron-activated enzymes, generally lose their activities under aerobic conditions due to their oxygen-sensitivities. In this paper, we expressed an extremely thermostable group III ADH from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 (PhADH) heterologously in Escherichia coli. When purified from a culture medium containing nickel, the recombinant PhADH (Ni-PhADH) contained 0.85 ± 0.01 g-atoms of nickel per subunit. Ni-PhADH retained high activity under aerobic conditions (9...
January 13, 2017: Journal of Biological Inorganic Chemistry: JBIC
Yuki Okabe, Sze Koon Lee, Mio Kondo, Shigeyuki Masaoka
The construction of molecular catalysts that are active toward CO2 reduction is of great significance for designing sustainable energy conversion systems. In this study, we aimed to develop catalysts for CO2 reduction by introducing aromatic substituents to the meso-positions of iron porphyrin complexes. Three novel iron porphyrin complexes with π-expanded substituents (5,10,15,20-tetrakis(pyren-1-yl)porphyrinato iron(III) chloride (Fe-Py)), π-extended substituents (5,10,15,20-tetrakis((1,1'-biphenyl)-4-yl)porphyrinato iron(III) chloride (Fe-PPh)) and π-expanded and extended substituents (5,10,15,20-tetrakis(4-(pyren-1-yl)phenyl)porphyrinato iron(III) chloride (Fe-PPy)) were successfully synthesized, and their physical properties were investigated by UV-vis absorption spectroscopy and electrochemical measurements under Ar in comparison with an iron complex with a basic framework, 5,10,15,20-tetrakis(phenyl)porphyrinato iron(III) chloride (Fe-Ph)...
January 12, 2017: Journal of Biological Inorganic Chemistry: JBIC
Masafumi Minoshima, Kazuya Kikuchi
Super-resolution fluorescence microscopy is a recently developed imaging tool for biological researches. Several methods have been developed for detection of fluorescence signals from molecules in a subdiffraction-limited area, breaking the diffraction limit of the conventional optical microscopies and allowing visualization of detailed macromolecular structures in cells. As objectives are exposed to intense laser in the optical systems, fluorophores for super-resolution microscopy must be tolerated even under severe light irradiation conditions...
January 12, 2017: Journal of Biological Inorganic Chemistry: JBIC
V Calderone, M Fragai, G Gallo, C Luchinat
The X-ray structure of human apo-S100Z has been solved and compared with that of the zebrafish calcium-bound S100Z, which is the closest in sequence. Human apo-S100A12, which shows only 43% sequence identity to human S100Z, has been used as template model to solve the crystallographic phase problem. Although a significant buried surface area between the two physiological dimers is present in the asymmetric unit of human apo-S100Z, the protein does not form the superhelical arrangement in the crystal as observed for the zebrafish calcium-bound S100Z and human calcium-bound S100A4...
January 10, 2017: Journal of Biological Inorganic Chemistry: JBIC
Subhasree Kal, Lawrence Que
The 2-His-1-carboxylate facial triad is a widely used scaffold to bind the iron center in mononuclear nonheme iron enzymes for activating dioxygen in a variety of oxidative transformations of metabolic significance. Since the 1990s, over a hundred different iron enzymes have been identified to use this platform. This structural motif consists of two histidines and the side chain carboxylate of an aspartate or a glutamate arranged in a facial array that binds iron(II) at the active site. This triad occupies one face of an iron-centered octahedron and makes the opposite face available for the coordination of O2 and, in many cases, substrate, allowing the tailoring of the iron-dioxygen chemistry to carry out a plethora of diverse reactions...
January 10, 2017: Journal of Biological Inorganic Chemistry: JBIC
Priyanka Chauhan, Sai Brinda Muralidharan, Anand Babu Velappan, Dhrubajyoti Datta, Sanjay Pratihar, Joy Debnath, Kalyan Sundar Ghosh
Protein aggregation, due to the imbalance in the concentration of Cu(2+) and Zn(2+) ions is found to be allied with various physiological disorders. Copper is known to promote the oxidative damage of β/γ-crystallins in aged eye lens and causes their aggregation leading to cataract. Therefore, synthesis of a small-molecule 'chelator' for Cu(2+) with complementary antioxidant effect will find potential applications against aggregation of β/γ-crystallins. In this paper, we have reported the synthesis of different Schiff bases and studied their Cu(2+) complexation ability (using UV-Vis, FT-IR and ESI-MS) and antioxidant activity...
January 5, 2017: Journal of Biological Inorganic Chemistry: JBIC
Hannah U Holtkamp, Stuart J Morrow, Mario Kubanik, Christian G Hartinger
Run-by-run variations are very common in capillary electrophoretic (CE) separations and cause imprecision in both the migration times and the peak areas. This makes peak and kinetic trend identification difficult and error prone. With the aim to identify suitable standards for CE separations which are compatible with the common detectors UV, ESI-MS, and ICP-MS, the Co(III) complexes [Co(en)3]Cl3, [Co(acac)3] and K[Co(EDTA)] were evaluated as internal standards in the reaction of the anticancer drug cisplatin and guanosine 5'-monophosphate as an example of a classical biological inorganic chemistry experiment...
January 2, 2017: Journal of Biological Inorganic Chemistry: JBIC
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"