journal
MENU ▼
Read by QxMD icon Read
search

Lifetime Data Analysis

journal
https://www.readbyqxmd.com/read/29022153/practical-considerations-when-analyzing-discrete-survival-times-using-the-grouped-relative-risk-model
#1
Rachel MacKay Altman, Andrew Henrey
The grouped relative risk model (GRRM) is a popular semi-parametric model for analyzing discrete survival time data. The maximum likelihood estimators (MLEs) of the regression coefficients in this model are often asymptotically efficient relative to those based on a more restrictive, parametric model. However, in settings with a small number of sampling units, the usual properties of the MLEs are not assured. In this paper, we discuss computational issues that can arise when fitting a GRRM to small samples, and describe conditions under which the MLEs can be ill-behaved...
October 11, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28871363/a-joint-model-of-cancer-incidence-metastasis-and-mortality
#2
Qui Tran, Kelley M Kidwell, Alex Tsodikov
Many diseases, especially cancer, are not static, but rather can be summarized by a series of events or stages (e.g. diagnosis, remission, recurrence, metastasis, death). Most available methods to analyze multi-stage data ignore intermediate events and focus on the terminal event or consider (time to) multiple events as independent. Competing-risk or semi-competing-risk models are often deficient in describing the complex relationship between disease progression events which are driven by a shared progression stochastic process...
September 4, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28864842/a-semiparametric-regression-cure-model-for-doubly-censored-data
#3
Peijie Wang, Xingwei Tong, Jianguo Sun
This paper discusses regression analysis of doubly censored failure time data when there may exist a cured subgroup. By doubly censored data, we mean that the failure time of interest denotes the elapsed time between two related events and the observations on both event times can suffer censoring (Sun in The statistical analysis of interval-censored failure time data. Springer, New York, 2006). One typical example of such data is given by an acquired immune deficiency syndrome cohort study. Although many methods have been developed for their analysis (De Gruttola and Lagakos in Biometrics 45:1-12, 1989; Sun et al...
September 1, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28856493/joint-modeling-of-survival-time-and-longitudinal-outcomes-with-flexible-random-effects
#4
Jaeun Choi, Donglin Zeng, Andrew F Olshan, Jianwen Cai
Joint models with shared Gaussian random effects have been conventionally used in analysis of longitudinal outcome and survival endpoint in biomedical or public health research. However, misspecifying the normality assumption of random effects can lead to serious bias in parameter estimation and future prediction. In this paper, we study joint models of general longitudinal outcomes and survival endpoint but allow the underlying distribution of shared random effect to be completely unknown. For inference, we propose to use a mixture of Gaussian distributions as an approximation to this unknown distribution and adopt an Expectation-Maximization (EM) algorithm for computation...
August 30, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28849359/two-sample-tests-for-survival-data-from-observational-studies
#5
Chenxi Li
When observational data are used to compare treatment-specific survivals, regular two-sample tests, such as the log-rank test, need to be adjusted for the imbalance between treatments with respect to baseline covariate distributions. Besides, the standard assumption that survival time and censoring time are conditionally independent given the treatment, required for the regular two-sample tests, may not be realistic in observational studies. Moreover, treatment-specific hazards are often non-proportional, resulting in small power for the log-rank test...
August 28, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28819787/flexible-semi-parametric-regression-of-state-occupational-probabilities-in-a-multistate-model-with-right-censored-data
#6
Chathura Siriwardhana, K B Kulasekera, Somnath Datta
Inference for the state occupation probabilities, given a set of baseline covariates, is an important problem in survival analysis and time to event multistate data. We introduce an inverse censoring probability re-weighted semi-parametric single index model based approach to estimate conditional state occupation probabilities of a given individual in a multistate model under right-censoring. Besides obtaining a temporal regression function, we also test the potential time varying effect of a baseline covariate on future state occupation...
August 17, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28785915/alternating-event-processes-during-lifetimes-population-dynamics-and-statistical-inference
#7
Russell T Shinohara, Yifei Sun, Mei-Cheng Wang
In the literature studying recurrent event data, a large amount of work has been focused on univariate recurrent event processes where the occurrence of each event is treated as a single point in time. There are many applications, however, in which univariate recurrent events are insufficient to characterize the feature of the process because patients experience nontrivial durations associated with each event. This results in an alternating event process where the disease status of a patient alternates between exacerbations and remissions...
August 7, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28779228/group-and-within-group-variable-selection-for-competing-risks-data
#8
Kwang Woo Ahn, Anjishnu Banerjee, Natasha Sahr, Soyoung Kim
Variable selection in the presence of grouped variables is troublesome for competing risks data: while some recent methods deal with group selection only, simultaneous selection of both groups and within-group variables remains largely unexplored. In this context, we propose an adaptive group bridge method, enabling simultaneous selection both within and between groups, for competing risks data. The adaptive group bridge is applicable to independent and clustered data. It also allows the number of variables to diverge as the sample size increases...
August 4, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28779227/the-competing-risks-cox-model-with-auxiliary-case-covariates-under-weaker-missing-at-random-cause-of-failure
#9
Daniel Nevo, Reiko Nishihara, Shuji Ogino, Molin Wang
In the analysis of time-to-event data with multiple causes using a competing risks Cox model, often the cause of failure is unknown for some of the cases. The probability of a missing cause is typically assumed to be independent of the cause given the time of the event and covariates measured before the event occurred. In practice, however, the underlying missing-at-random assumption does not necessarily hold. Motivated by colorectal cancer molecular pathological epidemiology analysis, we develop a method to conduct valid analysis when additional auxiliary variables are available for cases only...
August 4, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28766089/reweighted-estimators-for-additive-hazard-model-with-censoring-indicators-missing-at-random
#10
Xiaolin Chen, Jianwen Cai
Survival data with missing censoring indicators are frequently encountered in biomedical studies. In this paper, we consider statistical inference for this type of data under the additive hazard model. Reweighting methods based on simple and augmented inverse probability are proposed. The asymptotic properties of the proposed estimators are established. Furthermore, we provide a numerical technique for checking adequacy of the fitted model with missing censoring indicators. Our simulation results show that the proposed estimators outperform the simple and augmented inverse probability weighted estimators without reweighting...
August 1, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28755021/a-regularized-variable-selection-procedure-in-additive-hazards-model-with-stratified-case-cohort-design
#11
Ai Ni, Jianwen Cai
Case-cohort designs are commonly used in large epidemiological studies to reduce the cost associated with covariate measurement. In many such studies the number of covariates is very large. An efficient variable selection method is needed for case-cohort studies where the covariates are only observed in a subset of the sample. Current literature on this topic has been focused on the proportional hazards model. However, in many studies the additive hazards model is preferred over the proportional hazards model either because the proportional hazards assumption is violated or the additive hazards model provides more relevent information to the research question...
July 28, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28733753/modeling-of-semi-competing-risks-by-means-of-first-passage-times-of-a-stochastic-process
#12
Beate Sildnes, Bo Henry Lindqvist
In semi-competing risks one considers a terminal event, such as death of a person, and a non-terminal event, such as disease recurrence. We present a model where the time to the terminal event is the first passage time to a fixed level c in a stochastic process, while the time to the non-terminal event is represented by the first passage time of the same process to a stochastic threshold S, assumed to be independent of the stochastic process. In order to be explicit, we let the stochastic process be a gamma process, but other processes with independent increments may alternatively be used...
July 22, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/27170333/mark-specific-additive-hazards-regression-with-continuous-marks
#13
Dongxiao Han, Liuquan Sun, Yanqing Sun, Li Qi
For survival data, mark variables are only observed at uncensored failure times, and it is of interest to investigate whether there is any relationship between the failure time and the mark variable. The additive hazards model, focusing on hazard differences rather than hazard ratios, has been widely used in practice. In this article, we propose a mark-specific additive hazards model in which both the regression coefficient functions and the baseline hazard function depend nonparametrically on a continuous mark...
July 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/26995733/analysis-of-two-phase-sampling-data-with-semiparametric-additive-hazards-models
#14
Yanqing Sun, Xiyuan Qian, Qiong Shou, Peter B Gilbert
Under the case-cohort design introduced by Prentice (Biometrica 73:1-11, 1986), the covariate histories are ascertained only for the subjects who experience the event of interest (i.e., the cases) during the follow-up period and for a relatively small random sample from the original cohort (i.e., the subcohort). The case-cohort design has been widely used in clinical and epidemiological studies to assess the effects of covariates on failure times. Most statistical methods developed for the case-cohort design use the proportional hazards model, and few methods allow for time-varying regression coefficients...
July 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/26993982/generalized-accelerated-failure-time-spatial-frailty-model-for-arbitrarily-censored-data
#15
Haiming Zhou, Timothy Hanson, Jiajia Zhang
Flexible incorporation of both geographical patterning and risk effects in cancer survival models is becoming increasingly important, due in part to the recent availability of large cancer registries. Most spatial survival models stochastically order survival curves from different subpopulations. However, it is common for survival curves from two subpopulations to cross in epidemiological cancer studies and thus interpretable standard survival models can not be used without some modification. Common fixes are the inclusion of time-varying regression effects in the proportional hazards model or fully nonparametric modeling, either of which destroys any easy interpretability from the fitted model...
July 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28608228/joint-analysis-of-interval-censored-failure-time-data-and-panel-count-data
#16
Da Xu, Hui Zhao, Jianguo Sun
Interval-censored failure time data and panel count data are two types of incomplete data that commonly occur in event history studies and many methods have been developed for their analysis separately (Sun in The statistical analysis of interval-censored failure time data. Springer, New York, 2006; Sun and Zhao in The statistical analysis of panel count data. Springer, New York, 2013). Sometimes one may be interested in or need to conduct their joint analysis such as in the clinical trials with composite endpoints, for which it does not seem to exist an established approach in the literature...
June 12, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28550654/censored-cumulative-residual-independent-screening-for-ultrahigh-dimensional-survival-data
#17
Jing Zhang, Guosheng Yin, Yanyan Liu, Yuanshan Wu
For complete ultrahigh-dimensional data, sure independent screening methods can effectively reduce the dimensionality while retaining all the active variables with high probability. However, limited screening methods have been developed for ultrahigh-dimensional survival data subject to censoring. We propose a censored cumulative residual independent screening method that is model-free and enjoys the sure independent screening property. Active variables tend to be ranked above the inactive ones in terms of their association with the survival times...
May 26, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/28536818/bayesian-bivariate-survival-analysis-using-the-power-variance-function-copula
#18
Jose S Romeo, Renate Meyer, Diego I Gallardo
Copula models have become increasingly popular for modelling the dependence structure in multivariate survival data. The two-parameter Archimedean family of Power Variance Function (PVF) copulas includes the Clayton, Positive Stable (Gumbel) and Inverse Gaussian copulas as special or limiting cases, thus offers a unified approach to fitting these important copulas. Two-stage frequentist procedures for estimating the marginal distributions and the PVF copula have been suggested by Andersen (Lifetime Data Anal 11:333-350, 2005), Massonnet et al...
May 23, 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/26880366/landmark-estimation-of-survival-and-treatment-effects-in-observational-studies
#19
Layla Parast, Beth Ann Griffin
Clinical studies aimed at identifying effective treatments to reduce the risk of disease or death often require long term follow-up of participants in order to observe a sufficient number of events to precisely estimate the treatment effect. In such studies, observing the outcome of interest during follow-up may be difficult and high rates of censoring may be observed which often leads to reduced power when applying straightforward statistical methods developed for time-to-event data. Alternative methods have been proposed to take advantage of auxiliary information that may potentially improve efficiency when estimating marginal survival and improve power when testing for a treatment effect...
April 2017: Lifetime Data Analysis
https://www.readbyqxmd.com/read/26423302/nonparametric-inference-for-the-joint-distribution-of-recurrent-marked-variables-and-recurrent-survival-time
#20
Laura M Yee, Kwun Chuen Gary Chan
Time between recurrent medical events may be correlated with the cost incurred at each event. As a result, it may be of interest to describe the relationship between recurrent events and recurrent medical costs by estimating a joint distribution. In this paper, we propose a nonparametric estimator for the joint distribution of recurrent events and recurrent medical costs in right-censored data. We also derive the asymptotic variance of our estimator, a test for equality of recurrent marker distributions, and present simulation studies to demonstrate the performance of our point and variance estimators...
April 2017: Lifetime Data Analysis
journal
journal
32387
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"