Read by QxMD icon Read

Molecular Membrane Biology

Ahmi Öz, Ömer Çelik
Transient Receptor Potential (TRP) channels are mostly Ca(2+) permeable cation channels. Transient Receptor Potential Melastatin-like 2 (TRPM2) is expressed in neurological tissues such as brain, dorsal root ganglia (DRG) neurons, hippocampus and also liver, heart and kidney. The SH-SY5Y cells are mostly used as a cellular model of neurodegenerative diseases, Alzheimer's and Parkinson's diseases. Curcumin, shows phenolic structure, synthesized by Curcuma longa L. (turmeric), has powerful non-enzymatically antioxidant effects compared with Vitamin E...
June 1, 2017: Molecular Membrane Biology
Erika Olivia Gómez, Yolanda Irasema Chirino, Norma Laura Delgado-Buenrostro, Alejandro López-Saavedra, Noemí Meraz-Cruz, Rebeca López-Marure
Metastases, responsible for most of the solid tumor associated deaths, require angiogenesis and changes in endothelial cells. In this work, the effect of the secretomes of three breast tumor cell lines (MCF-7, MDA-MB-231 and ZR-75-30) on human umbilical vein endothelial cells (HUVEC) morphology was investigated. HUVEC treated with secretomes from breast cells were analyzed by confocal and time-lapse microscopy. Secretomes from ZR-75-30 and MDA-MB-231 cells modify the morphology and adhesion of HUVEC. These changes may provoke the loss of endothelial monolayer integrity...
March 2016: Molecular Membrane Biology
Shaun Rawson, Simon Davies, Jonathan D Lippiat, Stephen P Muench
Membrane proteins are ubiquitous in biology and are key targets for therapeutic development. Despite this, our structural understanding has lagged behind that of their soluble counterparts. This review provides an overview of this important field, focusing in particular on the recent resurgence of electron microscopy (EM) and the increasing role it has to play in the structural studies of membrane proteins, and illustrating this through several case studies. In addition, we examine some of the challenges remaining in structural determination, and what steps are underway to enhance our knowledge of these enigmatic proteins...
March 2016: Molecular Membrane Biology
Sherry S Agabiti, Yilan Liang, Andrew J Wiemer
Geranylgeranyl diphosphate is a 20-carbon isoprenoid phospholipid whose lipid moiety can be post-translationally incorporated into proteins to promote membrane association. The process of geranylgeranylation has been implicated in anti-proliferative effects of clinical agents that inhibit enzymes of the mevalonate pathway (i.e. statins and nitrogenous bisphosphonates) as well as experimental agents that deplete geranylgeranyl diphosphate. Inhibitors of geranylgeranyl diphosphate synthase are an attractive way to block geranylgeranylation because they possess a calcium-chelating substructure to allow localization to bone and take advantage of a unique position of the enzyme within the biosynthetic pathway...
March 2016: Molecular Membrane Biology
Chi-Jung Weng, Ju-Ping Wu, Ming-Yen Kuo, Ya-Wei Hsueh
To investigate the effect of fluorescent probe on the properties of membranes, we studied model membranes composed of 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl 2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the presence and absence of fluorescent probe. The morphology of giant unilamellar vesicles (GUVs) has been observed as a function of temperature and composition by fluorescence microscopy using NBD-DOPE or C6-NBD-PC as the probe. The phase behavior of model membranes containing no fluorescent probe was investigated by (2)H-NMR spectroscopy...
March 2016: Molecular Membrane Biology
Audrey Montersino, Gareth M Thomas
Modification of proteins with the lipid palmitate, a process called palmitoylation, is important for the normal function of neuronal cells. However, most attention has focused on how palmitoylation regulates the targeting and trafficking of neurotransmitter receptors and non-enzymatic scaffold proteins. In this review we discuss recent studies that suggest that palmitoylation also plays additional roles in neurons by controlling the localization, interactions and perhaps even the activity of protein kinases that play key roles in physiological neuronal regulation and in neuropathological processes...
August 2015: Molecular Membrane Biology
Thieng Pham, Nadine S Henderson, Glenn T Werneburg, David G Thanassi, Anne H Delcour
The PapC usher, a β-barrel pore in the outer membrane of uropathogenic Escherichia coli, is used for assembly of the P pilus, a key virulence factor in bacterial colonization of human kidney cells. Each PapC protein is composed of a 24-stranded β-barrel channel, flanked by N- and C-terminal globular domains protruding into the periplasm, and occluded by a plug domain (PD). The PD is displaced from the channel towards the periplasm during pilus biogenesis, but the molecular mechanism for PD displacement remains unclear...
August 2015: Molecular Membrane Biology
Anita Wnętrzak, Kazimierz Łątka, Katarzyna Makyła-Juzak, Joanna Zemla, Patrycja Dynarowicz-Łątka
Outer layer of cellular membrane contains ordered domains enriched in cholesterol and sphingolipids, called 'lipid rafts', which play various biological roles, i.e., are involved in the induction of cell death by apoptosis. Recent studies have shown that these domains may constitute binding sites for selected drugs. For example alkylphosphocholines (APCs), which are new-generation antitumor agents characterized by high selectivity and broad spectrum of activity, are known to have their molecular targets located at cellular membrane and their selective accumulation in tumor cells has been hypothesized to be linked with the alternation of biophysical properties of lipid rafts...
August 2015: Molecular Membrane Biology
Kazumi Hiruma-Shimizu, Hiroki Shimizu, Gary S Thompson, Arnout P Kalverda, Simon G Patching
Detergents are amphiphilic compounds that have crucial roles in the extraction, purification and stabilization of integral membrane proteins and in experimental studies of their structure and function. One technique that is highly dependent on detergents for solubilization of membrane proteins is solution-state NMR spectroscopy, where detergent micelles often serve as the best membrane mimetic for achieving particle sizes that tumble fast enough to produce high-resolution and high-sensitivity spectra, although not necessarily the best mimetic for a biomembrane...
August 2015: Molecular Membrane Biology
Simon G Patching
Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers...
August 2015: Molecular Membrane Biology
Swarna M Patra, Sudip Chakraborty, Ganesh Shahane, Xavier Prasanna, Durba Sengupta, Prabal K Maiti, Amitabha Chattopadhyay
The serotonin1A receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin1A receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3 μs, to analyze the effect of cholesterol on the structure and dynamics of the serotonin1A receptor...
2015: Molecular Membrane Biology
Bor Luen Tang
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells target infected or transformed cells with perforin-containing cytotoxic granules through immune synapses, while platelets secrete several types of granules which contents are essential for thrombosis and hemostasis. Recent work has culminated in the notion that an exocytic SNARE complex, based on a very similar set of components, is primarily responsible for exocytosis of the diverse granules in these different cell types. Granule exocytosis is, in particular, uniquely dependent on the atypical Q-SNARE syntaxin 11, its interacting partners of the Sec/Munc (SM) family, and is regulated by Rab27a...
2015: Molecular Membrane Biology
Dhaval Patel, Prashant S Kharkar, Mukesh Nandave
System [Formula: see text] is an antiporter belonging to the hetero(di)meric amino acid transporter family. It is located on astrocytes as well as on blood-brain barrier within the CNS. It plays a pivotal role in free radical neutralization as well as neuronal signalling by regulating the glutathione production which occurs via the exchange of intracellular glutamate with extracellular cystine at 1:1 molar ratio. Understandably, it is a vital component responsible for the maintenance of neuronal homeostasis (e...
2015: Molecular Membrane Biology
Mirella V Koleva, Stephen Rothery, Martin Spitaler, Mark A A Neil, Anthony I Magee
Sonic hedgehog (Shh) is a morphogen active during vertebrate development and tissue homeostasis in adulthood. Dysregulation of the Shh signalling pathway is known to incite carcinogenesis. Due to the highly lipophilic nature of this protein imparted by two post-translational modifications, Shh's method of transit through the aqueous extracellular milieu has been a long-standing conundrum, prompting the proposition of numerous hypotheses to explain the manner of its displacement from the surface of the producing cell...
2015: Molecular Membrane Biology
Samuel Furse, Anton I P M de Kroon
Since its discovery in the 19th century, phosphatidylcholine (PC) has been regarded primarily as a structural lipid. However, more recent evidence, much of it in the last five years, strongly suggests that PC has other roles. Here, we explore some of that new evidence and consider the possibility that the ultimate role of phosphatidylcholine may not be predictable.
2015: Molecular Membrane Biology
Henriette Elisabeth Autzen, Iwona Siuda, Yonathan Sonntag, Poul Nissen, Jesper Vuust Møller, Lea Thøgersen
Like other integral membrane proteins, the activity of the Sarco/Endoplasmic Reticulum Ca(2+)-ATPase (SERCA) is regulated by the membrane environment. Cholesterol is present in the endoplasmic reticulum membrane at low levels, and it has the potential to affect SERCA activity both through direct, specific interaction with the protein or through indirect interaction through changes of the overall membrane properties. There are experimental data arguing for both modes of action for a cholesterol-mediated regulation of SERCA...
2015: Molecular Membrane Biology
Samuel Furse, Maarten R Egmond, J Antoinette Killian
Isolation of the lipid fraction from biological samples has been a crucial part of countless studies over the last century. This considerable research interest has led to the development of a number of methods for isolating a range of molecular species that fall under the umbrella term "lipid". Such methods vary in popularity, complexity, specificity and even toxicity. In this review, we explore examples of published methods (1952-2014) for isolating lipids from biological samples and attempt to assess the limits of techniques both from a chemical and biological perspective...
2015: Molecular Membrane Biology
Tony Magee, Peter Henderson, Alison Baker, Vincent Postis, Stephen Muench
No abstract text is available yet for this article.
2015: Molecular Membrane Biology
Begum G Akkaya, Joseph K Zolnerciks, Tasha K Ritchie, Bjoern Bauer, Anika M S Hartz, James A Sullivan, Kenneth J Linton
The ATP Binding Cassette transporter ABCB1 can export the neurotoxic peptide β-amyloid from endothelial cells that line the blood-brain barrier (BBB). This has the potential to lower cerebral levels of β-amyloid, but ABCB1 expression in the BBB appears to be progressively reduced in patients with Alzheimer's disease. The surface density of many membrane proteins is regulated by ubiquitination catalyzed by ubiquitin E3 ligases. In brain capillaries of mice challenged with β-amyloid ex vivo, we show that the level of the ubiquitin ligase Nedd4 increases concomitant with reduction in Abcb1...
2015: Molecular Membrane Biology
Liao Y Chen
In order to elucidate how phosphatidylserine (PS6) interacts with AQP5 in a cell membrane, we developed a hybrid steered molecular dynamics (hSMD) method that involved: (1) Simultaneously steering two centers of mass of two selected segments of the ligand, and (2) equilibrating the ligand-protein complex with and without biasing the system. Validating hSMD, we first studied vascular endothelial growth factor receptor 1 (VEGFR1) in complex with N-(4-Chlorophenyl)-2-((pyridin-4-ylmethyl)amino)benzamide (8ST), for which the binding energy is known from in vitro experiments...
2015: Molecular Membrane Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"