Read by QxMD icon Read

Human Brain Mapping

Jianxiao Wu, Gia H Ngo, Douglas Greve, Jingwei Li, Tong He, Bruce Fischl, Simon B Eickhoff, B T Thomas Yeo
The results of most neuroimaging studies are reported in volumetric (e.g., MNI152) or surface (e.g., fsaverage) coordinate systems. Accurate mappings between volumetric and surface coordinate systems can facilitate many applications, such as projecting fMRI group analyses from MNI152/Colin27 to fsaverage for visualization or projecting resting-state fMRI parcellations from fsaverage to MNI152/Colin27 for volumetric analysis of new data. However, there has been surprisingly little research on this topic. Here, we evaluated three approaches for mapping data between MNI152/Colin27 and fsaverage coordinate systems by simulating the above applications: projection of group-average data from MNI152/Colin27 to fsaverage and projection of fsaverage parcellations to MNI152/Colin27...
May 16, 2018: Human Brain Mapping
Pablo I Burgos, Juan J Mariman, Scott Makeig, Gonzalo Rivera-Lillo, Pedro E Maldonado
The ability to transfer sensorimotor skill components to new actions and the capacity to use skill components from whole actions are characteristic of the adaptability of the human sensorimotor system. However, behavioral evidence suggests complex limitations for transfer after combined or modular learning of motor adaptations. Also, to date, only behavioral analysis of the consequences of the modular learning has been reported, with little understanding of the sensorimotor mechanisms of control and the interaction between cortical areas...
May 15, 2018: Human Brain Mapping
Seung Kwan Kang, Seongho Seo, Seong A Shin, Min Soo Byun, Dong Young Lee, Yu Kyeong Kim, Dong Soo Lee, Jae Sung Lee
Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alzheimer's disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of the same individual is technically challenging. In this study, we applied deep neural networks to generate individually adaptive PET templates for robust and accurate SN of amyloid PET without using matched 3D MR images. Using 681 pairs of simultaneously acquired 11 C-PIB PET and T1-weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network (GAN)] that produce adaptive best PET templates...
May 11, 2018: Human Brain Mapping
Akhil Kottaram, Leigh Johnston, Eleni Ganella, Christos Pantelis, Ramamohanarao Kotagiri, Andrew Zalesky
Correlation in functional MRI activity between spatially separated brain regions can fluctuate dynamically when an individual is at rest. These dynamics are typically characterized temporally by measuring fluctuations in functional connectivity between brain regions that remain fixed in space over time. Here, dynamics in functional connectivity were characterized in both time and space. Temporal dynamics were mapped with sliding-window correlation, while spatial dynamics were characterized by enabling network regions to vary in size (shrink/grow) over time according to the functional connectivity profile of their constituent voxels...
May 10, 2018: Human Brain Mapping
Emily L Dennis, Talin Babikian, Jeffry Alger, Faisal Rashid, Julio E Villalon-Reina, Yan Jin, Alexander Olsen, Richard Mink, Christopher Babbitt, Jeffrey Johnson, Christopher C Giza, Paul M Thompson, Robert F Asarnow
Traumatic brain injury can cause extensive damage to the white matter (WM) of the brain. These disruptions can be especially damaging in children, whose brains are still maturing. Diffusion magnetic resonance imaging (dMRI) is the most commonly used method to assess WM organization, but it has limited resolution to differentiate causes of WM disruption. Magnetic resonance spectroscopy (MRS) yields spectra showing the levels of neurometabolites that can indicate neuronal/axonal health, inflammation, membrane proliferation/turnover, and other cellular processes that are on-going post-injury...
May 10, 2018: Human Brain Mapping
Chunliang Feng, Jie Yuan, Haiyang Geng, Ruolei Gu, Hui Zhou, Xia Wu, Yuejia Luo
Narcissism is one of the most fundamental personality traits in which individuals in general population exhibit a large heterogeneity. Despite a surge of interest in examining behavioral characteristics of narcissism in the past decades, the neurobiological substrates underlying narcissism remain poorly understood. Here, we addressed this issue by applying a machine learning approach to decode trait narcissism from whole-brain resting-state functional connectivity (RSFC). Resting-state functional MRI (fMRI) data were acquired for a large sample comprising 155 healthy adults, each of whom was assessed for trait narcissism...
May 10, 2018: Human Brain Mapping
Li-Ying Fan, Chi-Yung Shang, Wen-Yih Isaac Tseng, Susan Shur-Fen Gau, Tai-Li Chou
Deficits in inhibitory control and visual processing are common in youths with attention-deficit/hyperactivity disorder (ADHD), but little is known about endophenotypes for unaffected siblings of youths with ADHD. This study aimed to investigate the potential endophenotypes of brain activation and performance in inhibitory control and visual processing among ADHD probands, their unaffected siblings, and neurotypical youths. We assessed 27 ADHD probands, 27 unaffected siblings, and 27 age-, gender-, and IQ-matched neurotypical youths using the counting Stroop functional magnetic resonance imaging and two tasks of the Cambridge Neuropsychological Test Automated Battery (CANTAB): rapid visual information processing (RVP) for inhibitory control and spatial span (SSP) for visual processing...
May 10, 2018: Human Brain Mapping
Tom A Fuchs, Michael G Dwyer, Amy Kuceyeski, Sanjeevani Choudhery, Keith Carolus, Xian Li, Matthew Mallory, Bianca Weinstock-Guttman, Dejan Jakimovski, Deepa Ramasamy, Robert Zivadinov, Ralph H B Benedict
Quantifying white matter (WM) tract disruption in people with multiple sclerosis (PwMS) provides a novel means for investigating the relationship between defective network connectivity and clinical markers. PwMS exhibit perturbations in personality, where decreased Conscientiousness is particularly prominent. This trait deficit influences disease trajectory and functional outcomes such as work capacity. We aimed to identify patterns of WM tract disruption related to decreased Conscientiousness in PwMS. Personality assessment and brain MRI were obtained in 133 PwMS and 49 age- and sex-matched healthy controls (HC)...
May 8, 2018: Human Brain Mapping
Jongin Kim, Boreom Lee
Different modalities such as structural MRI, FDG-PET, and CSF have complementary information, which is likely to be very useful for diagnosis of AD and MCI. Therefore, it is possible to develop a more effective and accurate AD/MCI automatic diagnosis method by integrating complementary information of different modalities. In this paper, we propose multi-modal sparse hierarchical extreme leaning machine (MSH-ELM). We used volume and mean intensity extracted from 93 regions of interest (ROIs) as features of MRI and FDG-PET, respectively, and used p-tau, t-tau, and Aβ42 as CSF features...
May 7, 2018: Human Brain Mapping
Isabelle Ripp, Anna-Nora Zur Nieden, Sonja Blankenagel, Nicolai Franzmeier, Johan N Lundström, Jessica Freiherr
In this study, we aimed to understand how whole-brain neural networks compute sensory information integration based on the olfactory and visual system. Task-related functional magnetic resonance imaging (fMRI) data was obtained during unimodal and bimodal sensory stimulation. Based on the identification of multisensory integration processing (MIP) specific hub-like network nodes analyzed with network-based statistics using region-of-interest based connectivity matrices, we conclude the following brain areas to be important for processing the presented bimodal sensory information: right precuneus connected contralaterally to the supramarginal gyrus for memory-related imagery and phonology retrieval, and the left middle occipital gyrus connected ipsilaterally to the inferior frontal gyrus via the inferior fronto-occipital fasciculus including functional aspects of working memory...
May 7, 2018: Human Brain Mapping
Celine Maes, Lize Hermans, Lisa Pauwels, Sima Chalavi, Inge Leunissen, Oron Levin, Koen Cuypers, Ronald Peeters, Stefan Sunaert, Dante Mantini, Nicolaas A J Puts, Richard A E Edden, Stephan P Swinnen
Levels of GABA, the main inhibitory neurotransmitter in the brain, can be regionally quantified using magnetic resonance spectroscopy (MRS). Although GABA is crucial for efficient neuronal functioning, little is known about age-related differences in GABA levels and their relationship with age-related changes in brain structure. Here, we investigated the effect of age on GABA levels within the left sensorimotor cortex and the occipital cortex in a sample of 85 young and 85 older adults using the MEGA-PRESS sequence...
May 2, 2018: Human Brain Mapping
Stefanie Kübel, Katharina Stegmayer, Tim Vanbellingen, Sebastian Walther, Stephan Bohlhalter
Parkinson's disease (PD) patients frequently suffer from limb kinetic apraxia (LKA) affecting quality of life. LKA denotes an impairment of precise and independent finger movements beyond bradykinesia, which is reliably assessed by coin rotation (CR) task. BOLD fMRI detected activation of a left inferior parietal-premotor praxis network in PD during CR. Here, we explored which network site is most critical for LKA using arterial spin labeling (ASL). Based on a hierarchical model, we hypothesized that LKA would predominantly affect the functional integrity of premotor areas including supplementary motor areas (SMA)...
May 2, 2018: Human Brain Mapping
Thomas J Vanasse, P Mickle Fox, Daniel S Barron, Michaela Robertson, Simon B Eickhoff, Jack L Lancaster, Peter T Fox
The BrainMap database is a community resource that curates peer-reviewed, coordinate-based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta-data, BrainMap facilitates coordinate-based meta-analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task-activation literature, BrainMap is now expanding to include voxel-based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM...
May 2, 2018: Human Brain Mapping
Vahab Youssofzadeh, Jennifer Vannest, Darren S Kadis
Studies of language representation in development have shown a bilateral distributed pattern of activation that becomes increasingly left-lateralized and focal from young childhood to adulthood. However, the level by which canonical and extra-canonical regions, including subcortical and cerebellar regions, contribute to language during development has not been well-characterized. In this study, we employed fMRI connectivity analyses (fcMRI) to characterize the distributed network supporting expressive language in a group of young children (age 4-6) and adolescents (age 16-18)...
May 2, 2018: Human Brain Mapping
Simon Ludwig, Jan Herding, Felix Blankenburg
In recent electroencephalography (EEG) studies, the vibrotactile frequency comparison task has been used to study oscillatory signatures of perceptual decision making in humans, revealing a choice-selective modulation of premotor upper beta band power shortly before decisions were reported. Importantly, these studies focused on decisions that were (1) indicated immediately after stimulus presentation, and (2) for which a direct motor mapping was provided. Here, we investigated whether the putative beta band choice signal also extends to postponed decisions, and how such a decision signal might be influenced by a response mapping that is dissociated from a specific motor command...
May 2, 2018: Human Brain Mapping
Yul-Wan Sung, Yousuke Kawachi, Uk-Su Choi, Daehun Kang, Chihiro Abe, Yuki Otomo, Seiji Ogawa
The success of human life in modern society is highly dependent on occupation. Therefore, it is very important for people to identify and develop a career plan that best suits their aptitude. Traditional test batteries for vocational aptitudes are not oriented to measure developmental changes in job suitability because repeated measurements can introduce bias as the content of the test batteries is learned. In this study, we attempted to objectively assess vocational aptitudes by measuring functional brain networks and identified functional brain networks that intrinsically represented vocational aptitudes for 19 job divisions in a General Aptitude Test Battery...
May 1, 2018: Human Brain Mapping
Nina Merkel, Michael Wibral, Gareth Bland, Wolf Singer
Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal...
April 26, 2018: Human Brain Mapping
Nina N Kleineberg, Anna Dovern, Ellen Binder, Christian Grefkes, Simon B Eickhoff, Gereon R Fink, Peter H Weiss
Evidence from neuropsychological and imaging studies indicate that action and semantic knowledge about tools draw upon distinct neural substrates, but little is known about the underlying interregional effective connectivity. With fMRI and dynamic causal modeling (DCM) we investigated effective connectivity in the left-hemisphere (LH) while subjects performed (i) a function knowledge and (ii) a value knowledge task, both addressing semantic tool knowledge, and (iii) a manipulation (action) knowledge task. Overall, the results indicate crosstalk between action nodes and semantic nodes...
April 26, 2018: Human Brain Mapping
Yu Meng, Gang Li, Li Wang, Weili Lin, John H Gilmore, Dinggang Shen
The folding of the human cerebral cortex is highly complex and variable across individuals, but certain common major patterns of cortical folding do exist. Mining such common patterns of cortical folding is of great importance in understanding the inter-individual variability of cortical folding and their relationship with cognitive functions and brain disorders. As primary cortical folds are mainly genetically influenced and are well established at term birth, neonates with minimal exposure to the complicated postnatal environmental influences are ideal candidates for mining the major patterns of cortical folding...
April 26, 2018: Human Brain Mapping
Stuart Oldham, Carsten Murawski, Alex Fornito, George Youssef, Murat Yücel, Valentina Lorenzetti
The processing of rewards and losses are crucial to everyday functioning. Considerable interest has been attached to investigating the anticipation and outcome phases of reward and loss processing, but results to date have been inconsistent. It is unclear if anticipation and outcome of a reward or loss recruit similar or distinct brain regions. In particular, while the striatum has widely been found to be active when anticipating a reward, whether it activates in response to the anticipation of losses as well remains ambiguous...
April 25, 2018: Human Brain Mapping
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"