Read by QxMD icon Read

Trends in Microbiology

Boopathy Ramakrishnan, Karthik Viswanathan, Kannan Tharakaraman, Vlado Dančík, Rahul Raman, Gregory J Babcock, Zachary Shriver, Ram Sasisekharan
Broadly neutralizing monoclonal antibodies (bNAbs) for viral infections, such as HIV, respiratory syncytial virus (RSV), and influenza, are increasingly entering clinical development. For influenza, most neutralizing antibodies target influenza virus hemagglutinin. These bNAbs represent an emerging, promising modality for treatment and prophylaxis of influenza due to their multiple mechanisms of antiviral action and generally safe profile. Preclinical work in other viral diseases, such as dengue, has demonstrated the potential for antibody-based therapies to enhance viral uptake, leading to enhanced viremia and worsening of disease...
October 14, 2016: Trends in Microbiology
Paul J Planet, Apurva Narechania, Liang Chen, Barun Mathema, Sam Boundy, Gordon Archer, Barry Kreiswirth
A deluge of whole-genome sequencing has begun to give insights into the patterns and processes of microbial evolution, but genome sequences have accrued in a haphazard manner, with biased sampling of natural variation that is driven largely by medical and epidemiological priorities. For instance, there is a strong bias for sequencing epidemic lineages of methicillin-resistant Staphylococcus aureus (MRSA) over sensitive isolates (methicillin-sensitive S. aureus: MSSA). As more diverse genomes are sequenced the emerging picture is of a highly subdivided species with a handful of relatively clonal groups (complexes) that, at any given moment, dominate in particular geographical regions...
October 14, 2016: Trends in Microbiology
Kelly L Wyres, Kathryn E Holt
Antimicrobial-resistant Klebsiella pneumoniae (Kp) has emerged as a major global public health problem. While resistance can occur across a broad range of Kp clones, a small number have become globally distributed and commonly cause outbreaks in hospital settings. Here we describe recent comparative genomics investigations that have shed light on Kp population structure and the evolution of antimicrobial-resistant clones. These studies provide the basic framework within which genomic epidemiology and evolution can be understood, but have merely scratched the surface of what can and should be explored...
October 11, 2016: Trends in Microbiology
Daniela Araújo, Mariana Henriques, Sónia Silva
Most cases of candidiasis have been attributed to Candida albicans, but Candida glabrata, Candida parapsilosis and Candida tropicalis, designated as non-C. albicans Candida (NCAC), have been identified as frequent human pathogens. Moreover, Candida biofilms are an escalating clinical problem associated with significant rates of mortality. Biofilms have distinct developmental phases, including adhesion/colonisation, maturation and dispersal, controlled by complex regulatory networks. This review discusses recent advances regarding Candida species biofilm regulatory network genes, which are key components for candidiasis...
October 4, 2016: Trends in Microbiology
Guangming Zhong
Most Chlamydia species carry a 7.5kb plasmid encoding eight open reading frames conventionally called plasmid glycoproteins 1-8 or pGP1-8. Although the plasmid is not critical for chlamydial growth in vitro, its role in chlamydial pathogenesis is clearly demonstrated in the genital tracts of mice infected with Chlamydia muridarum, a model for investigating the human pathogen Chlamydia trachomatis. Plasmid-free C. trachomatis is also attenuated in both the mouse genital tract and nonhuman primate ocular tissue...
October 3, 2016: Trends in Microbiology
Jesús Arenas, Jan Tommassen
Extracellular DNA (eDNA) is an essential constituent of the extracellular matrix of biofilms of many microorganisms. In spite of many studies, it has long remained unclear how exactly eDNA exerts its role in biofilm formation. Here, we describe recent advances that have been made in understanding biofilm formation in the human pathogen Neisseria meningitidis. Several cell-surface-exposed proteins have been identified that bind DNA and other negatively charged polymers, such as heparin, by electrostatic interactions...
October 3, 2016: Trends in Microbiology
Diego Forni, Rachele Cagliani, Mario Clerici, Manuela Sironi
Human coronaviruses (HCoVs), including SARS-CoV and MERS-CoV, are zoonotic pathogens that originated in wild animals. HCoVs have large genomes that encode a fixed array of structural and nonstructural components, as well as a variety of accessory proteins that differ in number and sequence even among closely related CoVs. Thus, in addition to recombination and mutation, HCoV genomes evolve through gene gains and losses. In this review we summarize recent findings on the molecular evolution of HCoV genomes, with special attention to recombination and adaptive events that generated new viral species and contributed to host shifts and to HCoV emergence...
September 30, 2016: Trends in Microbiology
J Peter W Young
Bacterial core and accessory genome components are analogous to the operating system and applications of smartphones. The core genome provides stable taxonomy and species lists, but phenotypes reflect the mobile pool of accessory genes. This suggests changes to the ways we define bacterial species and describe bacterial communities.
September 24, 2016: Trends in Microbiology
Aaron M Nuss, Ann Kathrin Heroven, Petra Dersch
A large repertoire of RNA-based regulatory mechanisms, including a plethora of cis- and trans-acting noncoding RNAs (ncRNAs), sensory RNA elements, regulatory RNA-binding proteins, and RNA-degrading enzymes have been uncovered lately as key players in the regulation of metabolism, stress responses, and virulence of the genus Yersinia. Many of them are strictly controlled in response to fluctuating environmental conditions sensed during the course of the infection, and certain riboregulators have already been shown to be crucial for virulence...
September 17, 2016: Trends in Microbiology
Cheryl P Andam, Colin J Worby, Qiuzhi Chang, Michael G Campana
The recent use of next-generation sequencing methods to investigate historical disease outbreaks has provided us with an unprecedented ability to address important and long-standing questions in epidemiology, pathogen evolution, and human history. In this review, we present major findings that illustrate how microbial genomics has provided new insights into the nature and etiology of infectious diseases of historical importance, such as plague, tuberculosis, and leprosy. Sequenced isolates collected from archaeological remains also provide evidence for the timing of historical evolutionary events as well as geographic spread of these pathogens...
September 8, 2016: Trends in Microbiology
Paul R Jensen
Genome sequencing has created unprecedented opportunities for natural-product discovery and new insight into the diversity and distributions of natural-product biosynthetic gene clusters (BGCs). These gene collectives are highly evolved for horizontal exchange, thus providing immediate opportunities to test the effects of small molecules on fitness. The marine actinomycete genus Salinispora maintains extraordinary levels of BGC diversity and has become a useful model for studies of secondary metabolism. Most Salinispora BGCs are observed infrequently, resulting in high population-level diversity while conforming to constraints associated with maximum genome size...
August 1, 2016: Trends in Microbiology
Brian R Wasik, Karen N Barnard, Colin R Parrish
Sialic acids (Sias) are abundantly displayed on the surfaces of vertebrate cells, and particularly on all mucosal surfaces. Sias interact with microbes of many types, and are the targets of specific recognition by many different viruses. They may mediate virus binding and infection of cells, or alternatively can act as decoy receptors that bind virions and block virus infection. These nine-carbon backbone monosaccharides naturally occur in many different modified forms, and are attached to underlying glycans through varied linkages, creating significant diversity in the pathogen receptor forms...
August 1, 2016: Trends in Microbiology
Keisha Findley, David R Williams, Elizabeth A Grice, Vence L Bonham
An individual's microbiome is likely to be an important contributor to certain health disparity diseases and conditions. We present a framework to study the role of the microbiome and the multiple factors that are likely to influence differences in disease predisposition, onset, and progression at the individual and population level.
November 2016: Trends in Microbiology
Sebastian Felgner, Dino Kocijancic, Vinay Pawar, Siegfried Weiss
Designing bacterial vectors for cancer therapy represents a major challenge. Recent studies have explored novel strategies to balance benefit and safety. A study by Mercado-Lubo et al. has developed a next-generation concept combining bacterial properties with nanoparticles, demonstrating efficacy in combination with chemotherapeutics.
November 2016: Trends in Microbiology
Gerard D Wright
No abstract text is available yet for this article.
November 2016: Trends in Microbiology
Deniz Bombar, Ryan W Paerl, Lasse Riemann
The nitrogen input through biological N2 fixation is essential for life in vast areas of the global ocean. The belief is that cyanobacteria are the only relevant N2-fixing (diazotrophic) organisms. It has, however, now become evident that non-cyanobacterial diazotrophs, bacteria and archaea with ecologies fundamentally distinct from those of cyanobacteria, are widespread and occasionally fix N2 at significant rates. The documentation of a globally relevant nitrogen input from these diazotrophs would constitute a new paradigm for research on oceanic nitrogen cycling...
November 2016: Trends in Microbiology
Michelle E Mulcahy, Rachel M McLoughlin
Staphylococcus aureus persistently colonizes the anterior nares of approximately one fifth of the population and nasal carriage is a significant risk factor for infection. Recent advances have significantly refined our understanding of S. aureus-host communication during nasal colonization. Novel bacterial adherence mechanisms in the nasal epithelium have been identified, and novel roles for both the innate and the adaptive immune response in controlling S. aureus nasal colonization have been defined, through the use of both human and rodent models...
November 2016: Trends in Microbiology
Gerard D Wright
Rooted in the mechanism of action of antibiotics and subject to bacterial evolution, antibiotic resistance is difficult and perhaps impossible to overcome. Nevertheless, strategies can be used to minimize the emergence and impact of resistance. Antibiotic adjuvants offer one such approach. These are compounds that have little or no antibiotic activity themselves but act to block resistance or otherwise enhance antibiotic action. Antibiotic adjuvants are therefore delivered in combination with antibiotics and can be divided into two groups: Class I agents that act on the pathogen, and Class II agents that act on the host...
November 2016: Trends in Microbiology
Jason W Arnold, Jeffrey Roach, M Andrea Azcarate-Peril
Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking...
November 2016: Trends in Microbiology
Lauren Davey, Scott A Halperin, Song F Lee
Extracytoplasmic thiol-disulfide oxidoreductases (TDORs) catalyze the oxidation, reduction, and isomerization of protein disulfide bonds. Although these processes have been characterized in Gram-negative bacteria, the majority of Gram-positive TDORs have only recently been discovered. Results from recent studies have revealed distinct trends in the types of TDOR used by different groups of Gram-positive bacteria, and in their biological functions. Actinobacteria TDORs can be essential for viability, while Firmicute TDORs influence various physiological processes, including protein stability, oxidative stress resistance, bacteriocin production, and virulence...
November 2016: Trends in Microbiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"